1
|
Muscogiuri G, Palumbo P, Kitagawa K, Nakamura S, Senatieri A, De Cecco CN, Gershon G, Chierchia G, Usai J, Sferratore D, D'Angelo T, Guglielmo M, Dell'Aversana S, Jankovic S, Salgado R, Saba L, Cau R, Marra P, Di Cesare E, Sironi S. State of the art of CT myocardial perfusion. LA RADIOLOGIA MEDICA 2025; 130:438-452. [PMID: 39704963 DOI: 10.1007/s11547-024-01942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Coronary computed tomography angiography (CCTA) is a powerful tool to rule out coronary artery disease (CAD). In the last decade, myocardial perfusion CT (CTP) technique has been developed for the evaluation of myocardial ischemia, thereby increasing positive predictive value for diagnosis of obstructive CAD. A diagnostic strategy combining CCTA and perfusion acquisitions provides both anatomical coronary evaluation and functional evaluation of the stenosis, increasing the specificity and the positive predictive value of cardiac CT. This could improve risk stratification and guide revascularization procedures, reducing unnecessary diagnostic procedures in invasive coronary angiography. Two different acquisitions protocol have been developed for CTP. Static CTP allows a qualitative or semiquantitative evaluation of myocardial perfusion using a single scan during the first pass of iodinated contrast material in the myocardium. Dynamic CTP is capable of a quantitative evaluation of perfusion through multiple acquisitions, providing direct measure of the myocardial blood flow. For both, CTP acquisition hyperemia is reached using stressor agents such as adenosine or regadenoson. CTP in addition to CCTA acquisition shows good diagnostic accuracy compared to invasive fractional flow reserve (FFR). Furthermore, the evaluation of late iodine enhancement (LIE) could be performed allowing the detection of myocardial infarction.
Collapse
Affiliation(s)
- Giuseppe Muscogiuri
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, Piazza OMS, 1, 24127, Bergamo, Italy.
- School of Medicine, University of Milano-Bicocca, Milan, Italy.
| | - Pierpaolo Palumbo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Kakuya Kitagawa
- Regional Co-Creation Deployment Center, Mie University Mie Regional Plan Co-Creation Organization, Mie, Japan
- Department of Advanced Diagnostic Imaging, Mie University Graduate School of Medicine, Mie, Japan
| | - Satoshi Nakamura
- Department of Advanced Diagnostic Imaging, Mie University Graduate School of Medicine, Mie, Japan
| | | | - Carlo Nicola De Cecco
- Division of Cardiothoracic Imaging, Department of Radiology and Imaging Sciences, Emory University, Altanta, GA, USA
- Translational Laboratory for Cardiothoracic Imaging and Artificial Intelligence, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Gabrielle Gershon
- Translational Laboratory for Cardiothoracic Imaging and Artificial Intelligence, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | | | - Jessica Usai
- School of Medicine, University of Milano-Bicocca, Milan, Italy
| | | | - Tommaso D'Angelo
- Diagnostic and Interventional Radiology Unit, Department of Dental and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Marco Guglielmo
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Sonja Jankovic
- Center for Radiology, University Clinical Center Nis, Nis, Republic of Serbia
| | - Rodrigo Salgado
- Department of Radiology, Antwerp University Hospital & Holy Heart Lier, Antwerp, Belgium
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, Monserrato, Cagliari, Italy
| | - Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria, Monserrato, Cagliari, Italy
| | - Paolo Marra
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, Piazza OMS, 1, 24127, Bergamo, Italy
- School of Medicine, University of Milano-Bicocca, Milan, Italy
| | - Ernesto Di Cesare
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Sandro Sironi
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, Piazza OMS, 1, 24127, Bergamo, Italy
- School of Medicine, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
2
|
Tárnoki DL, Karlinger K, Ridge CA, Kiss FJ, Györke T, Grabczak EM, Tárnoki ÁD. Lung imaging methods: indications, strengths and limitations. Breathe (Sheff) 2024; 20:230127. [PMID: 39360028 PMCID: PMC11444493 DOI: 10.1183/20734735.0127-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/24/2024] [Indexed: 10/04/2024] Open
Abstract
Imaging methods are fundamental tools to detect and diagnose lung diseases, monitor their treatment and detect possible complications. Each modality, starting from classical chest radiographs and computed tomography, as well as the ever more popular and easily available thoracic ultrasound, magnetic resonance imaging and nuclear medicine methods, and new techniques such as photon counting computed tomography, radiomics and application of artificial intelligence, has its strong and weak points, which we should be familiar with to properly choose between the methods and interpret their results. In this review, we present the indications, strengths and main limitations of methods for chest imaging.
Collapse
Affiliation(s)
- Dávid László Tárnoki
- Medical Imaging Centre, Semmelweis University, Budapest, Hungary
- Oncologic Imaging and Invasive Diagnostic Centre and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Kinga Karlinger
- Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Carole A Ridge
- Department of Radiology, Royal Brompton and Harefield Hospitals, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Fanni Júlia Kiss
- Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Tamás Györke
- Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Elzbieta Magdalena Grabczak
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Ádám Domonkos Tárnoki
- Medical Imaging Centre, Semmelweis University, Budapest, Hungary
- Oncologic Imaging and Invasive Diagnostic Centre and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| |
Collapse
|
3
|
Nguyen ET, Green CR, Adams SJ, Bishop H, Gleeton G, Hague CJ, Hanneman K, Harris S, Strzelczyk J, Dennie C. CAR and CSTR Cardiac Computed Tomography (CT) Practice Guidelines: Part 1 Coronary CT Angiography (CCTA). Can Assoc Radiol J 2024; 75:488-501. [PMID: 38486401 DOI: 10.1177/08465371241233240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Imaging the heart is one of the most technically challenging applications of Computed Tomography (CT) due to the presence of cardiac motion limiting optimal visualization of small structures such as the coronary arteries. Electrocardiographic gating during CT data acquisition facilitates motion free imaging of the coronary arteries. Since publishing the first version of the Canadian Association of Radiologists (CAR) cardiac CT guidelines, many technological advances in CT hardware and software have emerged necessitating an update. The goal of these cardiac CT practice guidelines is to present an overview of the current evidence supporting the use of cardiac CT in various clinical scenarios and to outline standards of practice for patient safety and quality of care when establishing a cardiac CT program in Canada.
Collapse
Affiliation(s)
- Elsie T Nguyen
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | | | - Scott J Adams
- Department of Medical Imaging, Royal University Hospital, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Helen Bishop
- Division of Cardiology, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Guylaine Gleeton
- Department of Radiology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, QC, Canada
| | - Cameron J Hague
- Department of Diagnostic Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Kate Hanneman
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Scott Harris
- Department of Radiology, Memorial University, St. John's, NL, Canada
| | - Jacek Strzelczyk
- Department of Radiology, University of Manitoba, Winnipeg, MB, Canada
| | - Carole Dennie
- Department of Radiology, Radiation Oncology and Medical Physics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
Isayeva G, Rumora K, Potlukova E, Leibfarth JP, Schäfer I, Bartha Z, Zellweger MJ, Trendelenburg M, Hejlesen TK, Hansen AG, Thiel S, Mueller C. Diagnostic and prognostic value of mannan-binding lectin associated protein (MAp19) for functionally relevant coronary artery disease. Clin Chim Acta 2024; 558:119668. [PMID: 38599540 DOI: 10.1016/j.cca.2024.119668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND This study aimed to evaluate the diagnostic and prognostic potential of MAp19, a regulating component of the lectin pathway of the complement system, in patients with suspected functionally relevant coronary artery disease (fCAD) as well as the determinants of MAp19 levels. METHODS The presence of fCAD was adjudicated using myocardial perfusion imaging with single-photon emission tomography and, where available, coronary angiography. MAp19 levels were measured in participants at rest, at peak stress tests, and two hours after the stress. The study also tracked major cardiovascular events, including non-fatal myocardial infarction and cardiovascular death, over a five-year follow-up period. RESULTS Among the 1,571 patients analyzed (32.3 % women), fCAD was identified in 462 individuals (29.4 %). MAp19 demonstrated no diagnostic significance, yielding an area under the curve (AUC) of 0.51 (0.47-0.55). Throughout the five-year follow-up, 107 patients (6.8 %) experienced non-fatal myocardial infarctions, 99 (6.3 %) had cardiovascular death, 194 (12.3 %) experienced all cause death and 50 (3.1 %) suffered a stroke. Cox and Kaplan-Meier analysis confirmed prognostic value of MAp19 for myocardial infarction, but not for cardiovascular death. Significant increases in the concentration of MAp19 were observed during bicycle (p = 0.001) and combined stress tests (p = 0.001). CONCLUSION MAp19 demonstrated an association with the risk of myocardial infarction. Increases in MAp19 concentration were observed during bicycle and combined stress-tests.
Collapse
Affiliation(s)
- Ganna Isayeva
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland.
| | - Klara Rumora
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Eliska Potlukova
- Division of Internal Medicine, University Hospital Basel, University of Basel, Switzerland; University Center of Internal Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Jan-Philipp Leibfarth
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Ibrahim Schäfer
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Zsofia Bartha
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Michael J Zellweger
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Marten Trendelenburg
- Division of Internal Medicine, University Hospital Basel, University of Basel, Switzerland
| | | | | | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Denmark
| | - Christian Mueller
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland.
| |
Collapse
|
5
|
Cayot B, Milot L, Valette PJ. Improved visualization of arterial supply of hepatic tumors during CT angiography using sublingual administration of glyceryl trinitrate. Diagn Interv Imaging 2023; 104:160-161. [PMID: 36283932 DOI: 10.1016/j.diii.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Bénédicte Cayot
- Body and VIR Radiology Department, Hospices Civils de Lyon, Hôpital Edouard Herriot, 69003 Lyon, France.
| | - Laurent Milot
- Body and VIR Radiology Department, Hospices Civils de Lyon, Hôpital Edouard Herriot, 69003 Lyon, France
| | - Pierre-Jean Valette
- Body and VIR Radiology Department, Hospices Civils de Lyon, Hôpital Edouard Herriot, 69003 Lyon, France
| |
Collapse
|
6
|
Giacobbe G, Granata V, Trovato P, Fusco R, Simonetti I, De Muzio F, Cutolo C, Palumbo P, Borgheresi A, Flammia F, Cozzi D, Gabelloni M, Grassi F, Miele V, Barile A, Giovagnoni A, Gandolfo N. Gender Medicine in Clinical Radiology Practice. J Pers Med 2023; 13:jpm13020223. [PMID: 36836457 PMCID: PMC9966684 DOI: 10.3390/jpm13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Gender Medicine is rapidly emerging as a branch of medicine that studies how many diseases common to men and women differ in terms of prevention, clinical manifestations, diagnostic-therapeutic approach, prognosis, and psychological and social impact. Nowadays, the presentation and identification of many pathological conditions pose unique diagnostic challenges. However, women have always been paradoxically underestimated in epidemiological studies, drug trials, as well as clinical trials, so many clinical conditions affecting the female population are often underestimated and/or delayed and may result in inadequate clinical management. Knowing and valuing these differences in healthcare, thus taking into account individual variability, will make it possible to ensure that each individual receives the best care through the personalization of therapies, the guarantee of diagnostic-therapeutic pathways declined according to gender, as well as through the promotion of gender-specific prevention initiatives. This article aims to assess potential gender differences in clinical-radiological practice extracted from the literature and their impact on health and healthcare. Indeed, in this context, radiomics and radiogenomics are rapidly emerging as new frontiers of imaging in precision medicine. The development of clinical practice support tools supported by artificial intelligence allows through quantitative analysis to characterize tissues noninvasively with the ultimate goal of extracting directly from images indications of disease aggressiveness, prognosis, and therapeutic response. The integration of quantitative data with gene expression and patient clinical data, with the help of structured reporting as well, will in the near future give rise to decision support models for clinical practice that will hopefully improve diagnostic accuracy and prognostic power as well as ensure a more advanced level of precision medicine.
Collapse
Affiliation(s)
- Giuliana Giacobbe
- General and Emergency Radiology Department, “Antonio Cardarelli” Hospital, 80131 Naples, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Piero Trovato
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
- Correspondence:
| | - Igino Simonetti
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy
| | - Pierpaolo Palumbo
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100 L’Aquila, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
| | - Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Federica Flammia
- Department of Emergency Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Diletta Cozzi
- Department of Emergency Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Michela Gabelloni
- Department of Translational Research, Diagnostic and Interventional Radiology, University of Pisa, 56126 Pisa, Italy
| | - Francesca Grassi
- Division of Radiology, “Università degli Studi della Campania Luigi Vanvitelli”, 80138 Naples, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Antonio Barile
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, 67100 L’Aquila, Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, Corso Scassi 1, 16149 Genoa, Italy
| |
Collapse
|
7
|
Albano D, Bruno F, Agostini A, Angileri SA, Benenati M, Bicchierai G, Cellina M, Chianca V, Cozzi D, Danti G, De Muzio F, Di Meglio L, Gentili F, Giacobbe G, Grazzini G, Grazzini I, Guerriero P, Messina C, Micci G, Palumbo P, Rocco MP, Grassi R, Miele V, Barile A. Dynamic contrast-enhanced (DCE) imaging: state of the art and applications in whole-body imaging. Jpn J Radiol 2022; 40:341-366. [PMID: 34951000 DOI: 10.1007/s11604-021-01223-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
Dynamic contrast-enhanced (DCE) imaging is a non-invasive technique used for the evaluation of tissue vascularity features through imaging series acquisition after contrast medium administration. Over the years, the study technique and protocols have evolved, seeing a growing application of this method across different imaging modalities for the study of almost all body districts. The main and most consolidated current applications concern MRI imaging for the study of tumors, but an increasing number of studies are evaluating the use of this technique also for inflammatory pathologies and functional studies. Furthermore, the recent advent of artificial intelligence techniques is opening up a vast scenario for the analysis of quantitative information deriving from DCE. The purpose of this article is to provide a comprehensive update on the techniques, protocols, and clinical applications - both established and emerging - of DCE in whole-body imaging.
Collapse
Affiliation(s)
- Domenico Albano
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento Di Biomedicina, Neuroscienze E Diagnostica Avanzata, Sezione Di Scienze Radiologiche, Università Degli Studi Di Palermo, via Vetoio 1L'Aquila, 67100, Palermo, Italy
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy.
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Andrea Agostini
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Clinical, Special and Dental Sciences, Department of Radiology, University Politecnica delle Marche, University Hospital "Ospedali Riuniti Umberto I - G.M. Lancisi - G. Salesi", Ancona, Italy
| | - Salvatore Alessio Angileri
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Radiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Benenati
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Dipartimento di Diagnostica per Immagini, Fondazione Policlinico Universitario A. Gemelli IRCCS, Oncologia ed Ematologia, RadioterapiaRome, Italy
| | - Giulia Bicchierai
- Diagnostic Senology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Michaela Cellina
- Department of Radiology, ASST Fatebenefratelli Sacco, Ospedale Fatebenefratelli, Milan, Italy
| | - Vito Chianca
- Ospedale Evangelico Betania, Naples, Italy
- Clinica Di Radiologia, Istituto Imaging Della Svizzera Italiana - Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Diletta Cozzi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Ginevra Danti
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Letizia Di Meglio
- Postgraduation School in Radiodiagnostics, University of Milan, Milan, Italy
| | - Francesco Gentili
- Unit of Diagnostic Imaging, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Giuliana Giacobbe
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Giulia Grazzini
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Irene Grazzini
- Department of Radiology, Section of Neuroradiology, San Donato Hospital, Arezzo, Italy
| | - Pasquale Guerriero
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | | | - Giuseppe Micci
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Dipartimento Di Biomedicina, Neuroscienze E Diagnostica Avanzata, Sezione Di Scienze Radiologiche, Università Degli Studi Di Palermo, via Vetoio 1L'Aquila, 67100, Palermo, Italy
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Abruzzo Health Unit 1, Department of diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, L'Aquila, Italy
| | - Maria Paola Rocco
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Roberto Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Antonio Barile
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
8
|
Stress Perfusion Cardiac Magnetic Resonance in Long-Standing Non-Infarcted Chronic Coronary Syndrome with Preserved Systolic Function. Diagnostics (Basel) 2022; 12:diagnostics12040786. [PMID: 35453834 PMCID: PMC9031407 DOI: 10.3390/diagnostics12040786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Background: The impact of imaging-derived ischemia is still under debate and the role of stress perfusion cardiac magnetic resonance (spCMR) in non-high-risk patient still needs to be clarified. The aim of this study was to evaluate the impact of spCMR in a case series of stable long-standing chronic coronary syndrome (CCS) patients with ischemia and no other risk factor. (2) Methods: This is a historical prospective study including 35 patients with history of long-standing CCS who underwent coronary CT angiography (CCTA) and additional adenosine spCMR. Clinical and imaging findings were included in the analysis. Primary outcomes were HF (heart failure) and all major cardiac events (MACE) including death from cardiovascular causes, myocardial infarction, or hospitalization for unstable angina, or resuscitated cardiac arrest. (3) Results: Mean follow-up was 3.7 years (IQR: from 1 to 6). Mean ejection fraction was 61 ± 8%. Twelve patients (31%) referred primary outcomes. Probability of experiencing primary outcomes based on symptoms was 62% and increased to 67% and 91% when multivessel disease and ischemia, respectively, were considered. Higher ischemic burden was predictive of disease progression (OR: 1.59, 95%CI: 1.18–2.14; p-value = 0.002). spCMR model resulted non inferior to the model comprising all variables (4) Conclusions: In vivo spCMR-modeling including perfusion and strain anomalies could represent a powerful tool in long-standing CCS, even when conventional imaging predictors are missing.
Collapse
|
9
|
Recommendations in pre-procedural imaging assessment for TAVI intervention: SIC-SIRM position paper part 2 (CT and MR angiography, standard medical reporting, future perspectives). LA RADIOLOGIA MEDICA 2022; 127:277-293. [PMID: 35129758 DOI: 10.1007/s11547-021-01434-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Non-invasive cardiovascular imaging owns a pivotal role in the preoperative assessment of patient candidates for transcatheter aortic valve implantation (TAVI), providing a wide range of crucial information to select the patients who will benefit the most and have the procedure done safely. This document has been developed by a joined group of experts of the Italian Society of Cardiology and the Italian Society of Medical and Interventional Radiology and aims to produce an updated consensus statement about the pre-procedural imaging assessment in candidate patients for TAVI intervention. The writing committee consisted of members and experts of both societies who worked jointly to develop a more integrated approach in the field of cardiac and vascular radiology. Part 2 of the document will cover CT and MR angiography, standard medical reporting, and future perspectives.
Collapse
|
10
|
Schroder J, Prescott E. Doppler Echocardiography Assessment of Coronary Microvascular Function in Patients With Angina and No Obstructive Coronary Artery Disease. Front Cardiovasc Med 2021; 8:723542. [PMID: 34778394 PMCID: PMC8585781 DOI: 10.3389/fcvm.2021.723542] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/22/2021] [Indexed: 01/18/2023] Open
Abstract
Echocardiographic evaluation is an essential part of the diagnostic work-up in patients with known or suspected cardiovascular disease. Transthoracic Doppler echocardiography (TTDE) enables straightforward and reliable visualization of flow in the left anterior descending artery. In the absence of obstructive coronary artery disease, low TTDE-derived coronary flow velocity reserve (CFVR) is considered a marker of coronary microvascular dysfunction (CMD). TTDE CFVR is free from ionizing radiation and widely available, utilizing high-frequency transducers, pharmacologic vasodilator stress, and pulsed-wave Doppler quantification of diastolic peak flow velocities. European Society of Cardiology guidelines recommend TTDE CFVR evaluation only following preceding anatomic invasive or non-invasive coronary imaging excluding obstructive CAD. Accordingly, clinical use of TTDE CFVR is limited and CMD frequently goes undiagnosed. An evolving body of evidence underlines that low CFVR is an important and robust predictor of adverse prognosis and continuing symptoms in angina patients both with and without obstructive CAD. The majority of angina patients have no obstructive CAD, particularly among women. This has led to the suggestion that there may be a gender-specific female atherosclerotic phenotype with less epicardial obstruction, and a low CFVR signifying CMD instead. Nevertheless, available evidence indicates low CFVR is an equally important prognostic marker in both men and women. In this review, TTDE CFVR was evaluated regarding indication, practical and technical aspects, and interpretation of results. Association with symptoms and prognosis, comparison with alternative invasive and non-invasive imaging modalities, and possible interventions in angina patients with low CFVR were discussed, and key research questions were proposed.
Collapse
Affiliation(s)
- Jakob Schroder
- Department of Cardiology, Bispebjerg Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|