1
|
Bransby KM, Bajaj R, Ramasamy A, Çap M, Yap N, Slabaugh G, Bourantas C, Zhang Q. POLYCORE: Polygon-based contour refinement for improved Intravascular Ultrasound Segmentation. Comput Biol Med 2024; 182:109162. [PMID: 39305731 DOI: 10.1016/j.compbiomed.2024.109162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 11/14/2024]
Abstract
Segmentation of the coronary vessel wall in intravascular ultrasound is a fundamental step in guiding coronary intervention. However, it is an challenging task, even for highly skilled cardiologists, due to image artefacts and shadowed regions caused by calcified plaque, guide wires and vessel side branches. Recently, dense-based neural networks have been applied to this task, however, they often fail to predict anatomically plausible contours in these low-signal areas. We propose a novel methodology called Polygon-based Contour Refiner (POLYCORE) that addresses topological error in dense-based segmentation networks using a relational inductive bias through higher-order connections between vertices to learn anatomically rational contours. Our approach remedies the over-smoothing phenomena common in polygon networks by introducing a new vector field refinement module which enables pixel-level detail to be added in an iterative process. POLYCORE is enhanced with augmented polygon aggregation which we show is more effective than typical dense-based test-time augmentation strategies. We achieve state-of-the-art results on two diverse datasets, observing particular improvements when segmenting the lumen structure and in topologically-challenging regions containing shadow artefacts. Our source code is available here: https://github.com/kitbransby/POLYCORE.
Collapse
Affiliation(s)
- Kit Mills Bransby
- School of Electronic Engineering and Computer Science, Queen Mary University of London, UK; Digital Environment Research Institute, Queen Mary University of London, UK
| | - Retesh Bajaj
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, UK; Department of Cardiology, Barts Health NHS Trust, London, UK
| | - Anantharaman Ramasamy
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, UK; Department of Cardiology, Barts Health NHS Trust, London, UK
| | - Murat Çap
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, UK; Department of Cardiology, Barts Health NHS Trust, London, UK
| | - Nathan Yap
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, UK; Department of Cardiology, Barts Health NHS Trust, London, UK
| | - Gregory Slabaugh
- School of Electronic Engineering and Computer Science, Queen Mary University of London, UK; Digital Environment Research Institute, Queen Mary University of London, UK
| | - Christos Bourantas
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, UK; Department of Cardiology, Barts Health NHS Trust, London, UK
| | - Qianni Zhang
- School of Electronic Engineering and Computer Science, Queen Mary University of London, UK; Digital Environment Research Institute, Queen Mary University of London, UK.
| |
Collapse
|
2
|
Gil-Rios MA, Cruz-Aceves I, Hernandez-Aguirre A, Moya-Albor E, Brieva J, Hernandez-Gonzalez MA, Solorio-Meza SE. High-Dimensional Feature Selection for Automatic Classification of Coronary Stenosis Using an Evolutionary Algorithm. Diagnostics (Basel) 2024; 14:268. [PMID: 38337787 PMCID: PMC10855604 DOI: 10.3390/diagnostics14030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
In this paper, a novel strategy to perform high-dimensional feature selection using an evolutionary algorithm for the automatic classification of coronary stenosis is introduced. The method involves a feature extraction stage to form a bank of 473 features considering different types such as intensity, texture and shape. The feature selection task is carried out on a high-dimensional feature bank, where the search space is denoted by O(2n) and n=473. The proposed evolutionary search strategy was compared in terms of the Jaccard coefficient and accuracy classification with different state-of-the-art methods. The highest feature selection rate, along with the best classification performance, was obtained with a subset of four features, representing a 99% discrimination rate. In the last stage, the feature subset was used as input to train a support vector machine using an independent testing set. The classification of coronary stenosis cases involves a binary classification type by considering positive and negative classes. The highest classification performance was obtained with the four-feature subset in terms of accuracy (0.86) and Jaccard coefficient (0.75) metrics. In addition, a second dataset containing 2788 instances was formed from a public image database, obtaining an accuracy of 0.89 and a Jaccard Coefficient of 0.80. Finally, based on the performance achieved with the four-feature subset, they can be suitable for use in a clinical decision support system.
Collapse
Affiliation(s)
- Miguel-Angel Gil-Rios
- Tecnologías de Información, Universidad Tecnológica de León, Blvd. Universidad Tecnológica 225, Col. San Carlos, León 37670, Mexico;
| | - Ivan Cruz-Aceves
- CONACYT, Centro de Investigación en Matemáticas (CIMAT), A.C., Jalisco S/N, Col. Valenciana, Guanajuato 36000, Mexico
| | - Arturo Hernandez-Aguirre
- Departamento de Computación, Centro de Investigación en Matemáticas (CIMAT), A.C., Jalisco S/N, Col. Valenciana, Guanajuato 36000, Mexico;
| | - Ernesto Moya-Albor
- Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, Ciudad de México 03920, Mexico; (E.M.-A.); (J.B.)
| | - Jorge Brieva
- Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, Ciudad de México 03920, Mexico; (E.M.-A.); (J.B.)
| | - Martha-Alicia Hernandez-Gonzalez
- Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades No. 1. Centro Médico Nacional del Bajio, IMSS, Blvd. Adolfo López Mateos esquina Paseo de los Insurgentes S/N, Col. Los Paraisos, León 37320, Mexico;
| | - Sergio-Eduardo Solorio-Meza
- División Ciencias de la Salud, Universidad Tecnológica de México, Campus León, Blvd. Juan Alonso de Torres 1041, Col. San José del Consuelo, León 37200, Mexico;
| |
Collapse
|
3
|
Kumari V, Kumar N, Kumar K S, Kumar A, Skandha SS, Saxena S, Khanna NN, Laird JR, Singh N, Fouda MM, Saba L, Singh R, Suri JS. Deep Learning Paradigm and Its Bias for Coronary Artery Wall Segmentation in Intravascular Ultrasound Scans: A Closer Look. J Cardiovasc Dev Dis 2023; 10:485. [PMID: 38132653 PMCID: PMC10743870 DOI: 10.3390/jcdd10120485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/15/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND AND MOTIVATION Coronary artery disease (CAD) has the highest mortality rate; therefore, its diagnosis is vital. Intravascular ultrasound (IVUS) is a high-resolution imaging solution that can image coronary arteries, but the diagnosis software via wall segmentation and quantification has been evolving. In this study, a deep learning (DL) paradigm was explored along with its bias. METHODS Using a PRISMA model, 145 best UNet-based and non-UNet-based methods for wall segmentation were selected and analyzed for their characteristics and scientific and clinical validation. This study computed the coronary wall thickness by estimating the inner and outer borders of the coronary artery IVUS cross-sectional scans. Further, the review explored the bias in the DL system for the first time when it comes to wall segmentation in IVUS scans. Three bias methods, namely (i) ranking, (ii) radial, and (iii) regional area, were applied and compared using a Venn diagram. Finally, the study presented explainable AI (XAI) paradigms in the DL framework. FINDINGS AND CONCLUSIONS UNet provides a powerful paradigm for the segmentation of coronary walls in IVUS scans due to its ability to extract automated features at different scales in encoders, reconstruct the segmented image using decoders, and embed the variants in skip connections. Most of the research was hampered by a lack of motivation for XAI and pruned AI (PAI) models. None of the UNet models met the criteria for bias-free design. For clinical assessment and settings, it is necessary to move from a paper-to-practice approach.
Collapse
Affiliation(s)
- Vandana Kumari
- School of Computer Science and Engineering, Galgotias University, Greater Noida 201310, India; (V.K.); (S.K.K.)
| | - Naresh Kumar
- Department of Applied Computational Science and Engineering, G L Bajaj Institute of Technology and Management, Greater Noida 201310, India
| | - Sampath Kumar K
- School of Computer Science and Engineering, Galgotias University, Greater Noida 201310, India; (V.K.); (S.K.K.)
| | - Ashish Kumar
- School of CSET, Bennett University, Greater Noida 201310, India;
| | - Sanagala S. Skandha
- Department of CSE, CMR College of Engineering and Technology, Hyderabad 501401, India;
| | - Sanjay Saxena
- Department of Computer Science and Engineering, IIT Bhubaneswar, Bhubaneswar 751003, India;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA;
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era, Deemed to be University, Dehradun 248002, India;
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100 Cagliari, Italy;
| | - Rajesh Singh
- Department of Research and Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India;
| | - Jasjit S. Suri
- Stroke Diagnostics and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Computer Science & Engineering, Graphic Era, Deemed to be University, Dehradun 248002, India
- Monitoring and Diagnosis Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
4
|
Yang Y, Yu W, Du H, Ling L, Feng Q, Tu S, Yang W. Coupled Contour Regression for Efficient Delineation of Lumen and External Elastic Lamina in Intravascular Ultrasound Images. IEEE J Biomed Health Inform 2023; 27:5883-5894. [PMID: 37792661 DOI: 10.1109/jbhi.2023.3321788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Automatic delineation of the lumen and vessel contours in intravascular ultrasound (IVUS) images is crucial for the subsequent IVUS-based analysis. Existing methods usually address this task through mask-based segmentation, which cannot effectively handle the anatomical plausibility of the lumen and external elastic lamina (EEL) contours and thus limits their performance. In this article, we propose a contour encoding based method called coupled contour regression network (CCRNet) to directly predict the lumen and EEL contour pairs. The lumen and EEL contours are resampled, coupled, and embedded into a low-dimensional space to learn a compact contour representation. Then, we employ a convolutional network backbone to predict the coupled contour signatures and reconstruct the signatures to the object contours by a linear decoder. Assisted by the implicit anatomical prior of the paired lumen and EEL contours in the signature space and contour decoder, CCRNet has the potential to avoid producing unreasonable results. We evaluated our proposed method on a large IVUS dataset consisting of 7204 cross-sectional frames from 185 pullbacks. The CCRNet can rapidly extract the contours at 100 fps. Without any post-processing, all produced contours are anatomically reasonable in the test 19 pullbacks. The mean Dice similarity coefficients of our CCRNet for the lumen and EEL are 0.940 and 0.958, which are comparable to the mask-based models. In terms of the contour metric Hausdorff distance, our CCRNet achieves 0.258 mm for lumen and 0.268 mm for EEL, which outperforms the mask-based models.
Collapse
|
5
|
Huang X, Bajaj R, Li Y, Ye X, Lin J, Pugliese F, Ramasamy A, Gu Y, Wang Y, Torii R, Dijkstra J, Zhou H, Bourantas CV, Zhang Q. POST-IVUS: A perceptual organisation-aware selective transformer framework for intravascular ultrasound segmentation. Med Image Anal 2023; 89:102922. [PMID: 37598605 DOI: 10.1016/j.media.2023.102922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/06/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023]
Abstract
Intravascular ultrasound (IVUS) is recommended in guiding coronary intervention. The segmentation of coronary lumen and external elastic membrane (EEM) borders in IVUS images is a key step, but the manual process is time-consuming and error-prone, and suffers from inter-observer variability. In this paper, we propose a novel perceptual organisation-aware selective transformer framework that can achieve accurate and robust segmentation of the vessel walls in IVUS images. In this framework, temporal context-based feature encoders extract efficient motion features of vessels. Then, a perceptual organisation-aware selective transformer module is proposed to extract accurate boundary information, supervised by a dedicated boundary loss. The obtained EEM and lumen segmentation results will be fused in a temporal constraining and fusion module, to determine the most likely correct boundaries with robustness to morphology. Our proposed methods are extensively evaluated in non-selected IVUS sequences, including normal, bifurcated, and calcified vessels with shadow artifacts. The results show that the proposed methods outperform the state-of-the-art, with a Jaccard measure of 0.92 for lumen and 0.94 for EEM on the IVUS 2011 open challenge dataset. This work has been integrated into a software QCU-CMS2 to automatically segment IVUS images in a user-friendly environment.
Collapse
Affiliation(s)
- Xingru Huang
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London, E3 4BL, UK; School of Communication Engineering, Hangzhou Dianzi University, Xiasha Higher Education Zone, Hangzhou, Zhejiang, China
| | - Retesh Bajaj
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Yilong Li
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London, E3 4BL, UK
| | - Xin Ye
- Zhejiang Provincial People's Hospital, 270 West Xueyuan Road, Wenzhou, Zhejiang, China
| | - Ji Lin
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London, E3 4BL, UK
| | - Francesca Pugliese
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Anantharaman Ramasamy
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Yue Gu
- Zhejiang Institute of Mechanical and Electrical Engineering, Hangzhou, China
| | - Yaqi Wang
- College of Media Engineering, Communication University of Zhejiang, Hangzhou, China
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK
| | | | - Huiyu Zhou
- School of Informatics, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | - Christos V Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Qianni Zhang
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London, E3 4BL, UK.
| |
Collapse
|
6
|
Arora P, Singh P, Girdhar A, Vijayvergiya R. Calcification Detection in Intravascular Ultrasound (IVUS) Images Using Transfer Learning Based MultiSVM model. ULTRASONIC IMAGING 2023; 45:136-150. [PMID: 37052393 DOI: 10.1177/01617346231164574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cardiovascular disease serves as the leading cause of death worldwide. Calcification detection is considered an important factor in cardiovascular diseases. Currently, medical practitioners visually inspect the presence of calcification using intravascular ultrasound (IVUS) images. The study aims to detect the extent of calcification as belonging to class I, II as mild calcification, and class III, IV as dense calcification from IVUS images acquired at 40 MHz. To detect calcification, the features were extracted using improved AlexNet architecture and then were fed into machine learning classifiers. The experiments were carried out using 14 real IVUS pullbacks of 10 patients. Experimental results show that the combination of traditional machine learning with deep learning approaches significantly improves accuracy. The results show that support vector machines outperform all other classifiers. The proposed model is compared with two other pre-trained models GoogLeNet (98.8%), SqueezeNet (99.2%), and exhibits considerable improvement in classification accuracy (99.8%). In the future other models such as Vision Transformers could be explored with additional feature selection methods such as ReliefF, PSO, ACO, etc. to improve the overall accuracy of diagnosis.
Collapse
Affiliation(s)
- Priyanka Arora
- IKG Punjab Technical University, Punjab, India
- Department of Computer Science and Engineering, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India
| | - Parminder Singh
- Department of Computer Science and Engineering, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India
| | - Akshay Girdhar
- Department of Information Technology, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India
| | - Rajesh Vijayvergiya
- Department of Cardiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
7
|
Arora P, Singh P, Girdhar A, Vijayvergiya R. A State-Of-The-Art Review on Coronary Artery Border Segmentation Algorithms for Intravascular Ultrasound (IVUS) Images. Cardiovasc Eng Technol 2023; 14:264-295. [PMID: 36650320 DOI: 10.1007/s13239-023-00654-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 11/28/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
Intravascular Ultrasound images (IVUS) is a useful guide for medical practitioners to identify the vascular status of coronary arteries in human beings. IVUS is a unique intracoronary imaging modality that is used as an adjunct to angioplasty to view vessel structures using a catheter with high resolutions. Segmentation of IVUS images has always remained a challenging task due to various impediments, for example, similar tissue components, vessel structures, and artifacts imposed during the acquisition process. Many researchers have applied various techniques to develop standard methods of image interpretation, however, the ultimate goal is still elusive to most researchers. This challenge was presented at the MICCAI- Computing and Visualization for (Intra)Vascular Imaging (CVII) workshop in 2011. This paper presents a major review of recently reported work in the field, with a detailed analysis of various segmentation techniques applied in IVUS, and highlights the directions for future research. The findings recommend a reference database with a larger number of samples acquired at varied transducer frequencies with special consideration towards complex lesions, suitable validation metrics, and ground-truth definition as a standard against which to compare new and current algorithms.
Collapse
Affiliation(s)
- Priyanka Arora
- Research Scholar, IKG Punjab Technical University, Punjab, India. .,Department of Computer Science and Engineering, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India.
| | - Parminder Singh
- Department of Computer Science and Engineering, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India
| | - Akshay Girdhar
- Department of Information Technology, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India
| | - Rajesh Vijayvergiya
- Department of Cardiology, Advanced Cardiac Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
8
|
|
9
|
Recent Trends in Artificial Intelligence-Assisted Coronary Atherosclerotic Plaque Characterization. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910003. [PMID: 34639303 PMCID: PMC8508413 DOI: 10.3390/ijerph181910003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 01/21/2023]
Abstract
Coronary artery disease is a major cause of morbidity and mortality worldwide. Its underlying histopathology is the atherosclerotic plaque, which comprises lipid, fibrous and—when chronic—calcium components. Intravascular ultrasound (IVUS) and intravascular optical coherence tomography (IVOCT) performed during invasive coronary angiography are reference standards for characterizing the atherosclerotic plaque. Fine image spatial resolution attainable with contemporary coronary computed tomographic angiography (CCTA) has enabled noninvasive plaque assessment, including identifying features associated with vulnerable plaques known to presage acute coronary events. Manual interpretation of IVUS, IVOCT and CCTA images demands scarce physician expertise and high time cost. This has motivated recent research into and development of artificial intelligence (AI)-assisted methods for image processing, feature extraction, plaque identification and characterization. We performed parallel searches of the medical and technical literature from 1995 to 2021 focusing respectively on human plaque characterization using various imaging modalities and the use of AI-assisted computer aided diagnosis (CAD) to detect and classify atherosclerotic plaques, including their composition and the presence of high-risk features denoting vulnerable plaques. A total of 122 publications were selected for evaluation and the analysis was summarized in terms of data sources, methods—machine versus deep learning—and performance metrics. Trends in AI-assisted plaque characterization are detailed and prospective research challenges discussed. Future directions for the development of accurate and efficient CAD systems to characterize plaque noninvasively using CCTA are proposed.
Collapse
|
10
|
Szarski M, Chauhan S. Improved real-time segmentation of Intravascular Ultrasound images using coordinate-aware fully convolutional networks. Comput Med Imaging Graph 2021; 91:101955. [PMID: 34252744 DOI: 10.1016/j.compmedimag.2021.101955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/26/2022]
Abstract
Segmentation of Intravascular Ultrasound (IVUS) images into Lumen and Media (interior and exterior) artery vessel walls is highly clinically relevant in the diagnosis and treatment of cardiovascular diseases such as atherosclerosis. When fused with position data, such segmentations also play a key role in reconstructing 3D representations of arteries. Automated segmentation in real-time is known to be a difficult image analysis problem, primarily due to artefacts commonly present in IVUS ultrasound images such as shadows, guide-wire effects, and side-branches. An additional challenge is the limited amount of expert labelled IVUS data, which limits the application of many well-performing deep learning models from other domains. To exploit the circular layered structure of the artery in B-Mode images, we propose a multi-class fully convolutional semantic segmentation network based on a minimal U-Net architecture augmented with learned translation dependence in the polar domain. The coordinate awareness in the multi-class segmentation allows the model to exploit relative spatial context about the interior and exterior vessel walls which are simply separable in polar coordinates. After training on 109 expert-labelled examples, our model significantly outperforms the state-of-the art in terms of mean Jaccard Measure (0.91 vs. 0.89) and Hausdorff distance (0.32 mm vs. 0.48 mm) on Media segmentation, and reaches equivalent performance on Lumen segmentation when evaluated on a standard publicly available dataset of 326 IVUS B-Mode images captured by 20 Mhz ultrasound probes. Using an order of magnitude fewer trainable parameters than the previous state-of-the-art, our model runs over 50 times faster and is able to execute in only 3 ms on a common GPU, achieving both leading accuracy and practical real-time performance.
Collapse
Affiliation(s)
- Martin Szarski
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Australia
| | - Sunita Chauhan
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Australia.
| |
Collapse
|
11
|
Li YC, Shen TY, Chen CC, Chang WT, Lee PY, Huang CCJ. Automatic Detection of Atherosclerotic Plaque and Calcification From Intravascular Ultrasound Images by Using Deep Convolutional Neural Networks. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1762-1772. [PMID: 33460377 DOI: 10.1109/tuffc.2021.3052486] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Atherosclerosis is the major cause of cardiovascular diseases (CVDs). Intravascular ultrasound (IVUS) is a common imaging modality for diagnosing CVDs. However, an efficient analyzer for IVUS image segmentation is required for assisting cardiologists. In this study, an end-to-end deep-learning convolutional neural network was developed for automatically detecting media-adventitia borders, luminal regions, and calcified plaque in IVUS images. A total of 713 grayscale IVUS images from 18 patients were used as training data for the proposed deep-learning model. The model is constructed using the three modified U-Nets and combined with the concept of cascaded networks to prevent errors in the detection of calcification owing to the interference of pixels outside the plaque regions. Three loss functions (Dice, Tversky, and focal loss) with various characteristics were tested to determine the best setting for the proposed model. The efficacy of the deep-learning model was evaluated by analyzing precision-recall curve. The average precision (AP), Dice score coefficient, precision, sensitivity, and specificity of the predicted and ground truth results were then compared. All training processes were validated using leave-one-subject-out cross-validation. The experimental results showed that the proposed deep-learning model exhibits high performance in segmenting the media-adventitia layers and luminal regions for all loss functions, with all tested metrics being higher than 0.90. For locating calcified tissues, the best result was obtained when the focal loss function was applied to the proposed model, with an AP of 0.73; however, the prediction efficacy was affected by the proportion of calcified tissues within the plaque region when the focal loss function was employed. Compared with commercial software, the proposed method exhibited high accuracy in segmenting IVUS images in some special cases, such as when shadow artifacts or side vessels surrounded the target vessel.
Collapse
|
12
|
Liu S, Neleman T, Hartman EMJ, Ligthart JMR, Witberg KT, van der Steen AFW, Wentzel JJ, Daemen J, van Soest G. Automated Quantitative Assessment of Coronary Calcification Using Intravascular Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2801-2809. [PMID: 32636052 DOI: 10.1016/j.ultrasmedbio.2020.04.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/08/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Coronary calcification represents a challenge in the treatment of coronary artery disease by stent placement. It negatively affects stent expansion and has been related to future adverse cardiac events. Intravascular ultrasound (IVUS) is known for its high sensitivity in detecting coronary calcification. At present, automated quantification of calcium as detected by IVUS is not available. For this reason, we developed and validated an optimized framework for accurate automated detection and quantification of calcified plaque in coronary atherosclerosis as seen by IVUS. Calcified lesions were detected by training a supported vector classifier per IVUS A-line on manually annotated IVUS images, followed by post-processing using regional information. We applied our framework to 35 IVUS pullbacks from each of the three commonly used IVUS systems. Cross-validation accuracy for each system was >0.9, and the testing accuracy was 0.87, 0.89 and 0.89 for the three systems. Using the detection result, we propose an IVUS calcium score, based on the fraction of calcium-positive A-lines in a pullback segment, to quantify the extent of calcified plaque. The high accuracy of the proposed classifier suggests that it may provide a robust and accurate tool to assess the presence and amount of coronary calcification and, thus, may play a role in image-guided coronary interventions.
Collapse
Affiliation(s)
- Shengnan Liu
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tara Neleman
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Eline M J Hartman
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jurgen M R Ligthart
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Karen T Witberg
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Antonius F W van der Steen
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, The Netherlands; Shenzhen Institutes of Advanced Technologies, Shenzhen, China
| | - Jolanda J Wentzel
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joost Daemen
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gijs van Soest
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
13
|
Huang Y, Yan W, Xia M, Guo Y, Zhou G, Wang Y. Vessel membrane segmentation and calcification location in intravascular ultrasound images using a region detector and an effective selection strategy. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 189:105339. [PMID: 31978806 DOI: 10.1016/j.cmpb.2020.105339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/03/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Segmenting vessel membranes and locating the calcific region in intravascular ultrasound (IVUS) images aid physicians in the diagnosis of atherosclerosis. However, the manual extraction of the media adventitia (MA)/lumen border and calcification location are cumbersome due to the excessive number of IVUS frames. Moreover, most existing (semi-)automatic detection methods cannot achieve both vessel membrane extraction and calcification location simultaneously, and they are unable to detect vessel membranes in IVUS frames from different acquisition systems. METHOD A fully automatic approach is proposed based on extremal regions and a flexible selection strategy to extract vessel membranes in different IVUS frames and locate the calcific region in high-frequency ones. Three main steps are included in the algorithm. First, a region detector is employed to extract extremal regions from an IVUS image. Then, according to the selection strategy, a part of the extracted regions is selected. At the same time, the calcification is located according to its special acoustic properties. Next, approximate MA and lumen border segmentation is achieved based on the selected extremal regions and the located calcification in polar coordinates. Finally, the final segmentation results are obtained by smoothing the approximate values. RESULT To demonstrate the feasibility of the method, it was evaluated based on a standard public dataset. Furthermore, to quantitatively evaluate the segmentation performance, the Hausdorff distance (HD), Jaccard measure (JM) and percentage of area difference (PAD) were used. The results show that a mean HD of 1.13/1.21 mm, a mean JM of 0.83/0.77 and a mean PAD of 0.11/0.23 are achieved for MA/lumen border detection in 77 40-MHz IVUS images. For MA/lumen border extraction in 435 20-MHz IVUS frames, the average HD, JM and PAD values are 0.47/0.28 mm, 0.84/0.89 and 0.13/0.10, respectively. In addition, the approach successfully achieves calcification location in 40-MHz IVUS frames. In comparison with other published methods, the method proposed in this study is competitive. CONCLUSION According to these results, our strategy can extract MA/lumen borders in different IVUS frames and effectively locate calcification in high-frequency IVUS frames.
Collapse
Affiliation(s)
- Yi Huang
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China
| | - Wenjun Yan
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China
| | - Menghua Xia
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China
| | - Yi Guo
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Fudan University, 200433, China
| | - Guohui Zhou
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Fudan University, 200433, China
| | - Yuanyuan Wang
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Fudan University, 200433, China.
| |
Collapse
|
14
|
Lee J, Hwang YN, Kim GY, Kwon JY, Kim SM. Automated classification of dense calcium tissues in gray-scale intravascular ultrasound images using a deep belief network. BMC Med Imaging 2019; 19:103. [PMID: 31888535 PMCID: PMC6937730 DOI: 10.1186/s12880-019-0403-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 12/18/2019] [Indexed: 01/20/2023] Open
Abstract
Background IVUS is widely used to quantitatively assess coronary artery disease. The purpose of this study was to automatically characterize dense calcium (DC) tissue in the gray scale intravascular ultrasound (IVUS) images using the image textural features. Methods A total of 316 Gy-scale IVUS and corresponding virtual histology images from 26 patients with acute coronary syndrome who underwent IVUS along with X-ray angiography between October 2009 to September 2014 were retrospectively acquired and analyzed. One expert performed all procedures and assessed their IVUS scans. After image acquisition, the DC candidate and corresponding acoustic shadow regions were automatically determined. Then, nine image-base feature groups were extracted from the DC candidates. In order to reduce the dimensionalities, principal component analysis (PCA) was performed, and selected feature sets were utilized as an input for a deep belief network. Classification results were validated using 10-fold cross validation. Results The dimensionality of the feature map was efficiently reduced by 50% (from 66 to 33) without any performance decrease using PCA method. Sensitivity, specificity, and accuracy of the proposed method were 92.8 ± 0.1%, 85.1 ± 0.1%, and 88.4 ± 0.1%, respectively (p < 0.05). We found that the window size could largely influence the characterization results, and selected the 5 × 5 size as the best condition. We also validated the performance superiority of the proposed method with traditional classification methods. Conclusions These experimental results suggest that the proposed method has significant clinical applicability for IVUS-based cardiovascular diagnosis.
Collapse
Affiliation(s)
- Juhwan Lee
- Department of Biomedical Engineering, Case Western Reserve University, 10900, Euclid Avenue, Cleveland, OH, 44106, USA
| | - Yoo Na Hwang
- Department of Medical Biotechnology, Dongguk University-Bio Medi Campus, (10326) 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Ga Young Kim
- Department of Medical Biotechnology, Dongguk University-Bio Medi Campus, (10326) 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Ji Yean Kwon
- Department of Medical Devices Industry, Dongguk University-Seoul, (04620) 30, Pildong-ro 1-gil, Jung-gu, Seoul, Republic of Korea
| | - Sung Min Kim
- Department of Medical Biotechnology, Dongguk University-Bio Medi Campus, (10326) 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea. .,Department of Medical Devices Industry, Dongguk University-Seoul, (04620) 30, Pildong-ro 1-gil, Jung-gu, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Lo Vercio L, Del Fresno M, Larrabide I. Lumen-intima and media-adventitia segmentation in IVUS images using supervised classifications of arterial layers and morphological structures. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 177:113-121. [PMID: 31319939 DOI: 10.1016/j.cmpb.2019.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/26/2019] [Accepted: 05/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Intravascular ultrasound (IVUS) provides axial grey-scale images of blood vessels. The large number of images require automatic analysis, specifically to identify the lumen and outer vessel wall. However, the high amount of noise, the presence of artifacts and anatomical structures, such as bifurcations, calcifications and fibrotic plaques, usually hinder the proper automatic segmentation of the vessel wall. METHODS Lumen, media, adventitia and surrounding tissues are automatically detected using Support Vector Machines (SVMs). The classification performance of the SVMs vary according to the kind of structure present within each region of the image. Random Forest (RF) is used to detect different morphological structures and to modify the initial layer classification depending on the detected structure. The resulting classification maps are fed into a segmentation method based on deformable contours to detect lumen-intima (LI) and media-adventitia (MA) interfaces. RESULTS The modifications in the layer classifications according to the presence of structures proved to be effective improving LI and MA segmentations. The proposed method reaches a Jaccard Measure (JM) of 0.88 ± 0.08 for LI segmentation, compared with 0.88 ± 0.05 of a semiautomatic method. When looking at MA, our method reaches a JM of 0.84 ± 0.09, and outperforms previous automatic methods in terms of HD, with 0.51mm ± 0.30. CONCLUSIONS A simple modification to the arterial layer classification produces results that match and improve state-of-the-art fully-automatic segmentation methods for LI and MA in 20MHz IVUS images. For LI segmentation, the proposed automatic method performs accurately as semi-automatic methods. For MA segmentation, our method matched the quality of state-of-the-art automatic methods described in the literature. Furthermore, our implementation is modular and open-source, allowing for future extensions and improvements.
Collapse
Affiliation(s)
- Lucas Lo Vercio
- Pladema Institute, UNCPBA, Gral. Pinto 399, Tandil, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Mariana Del Fresno
- Pladema Institute, UNCPBA, Gral. Pinto 399, Tandil, Argentina; Comisión de Investigaciones Científicas de la Provincia deBuenos Aires (CICPBA), Argentina
| | - Ignacio Larrabide
- Pladema Institute, UNCPBA, Gral. Pinto 399, Tandil, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
16
|
Yang J, Faraji M, Basu A. Robust segmentation of arterial walls in intravascular ultrasound images using Dual Path U-Net. ULTRASONICS 2019; 96:24-33. [PMID: 30947071 DOI: 10.1016/j.ultras.2019.03.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/19/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
A Fully Convolutional Network (FCN) based deep architecture called Dual Path U-Net (DPU-Net) is proposed for automatic segmentation of the lumen and media-adventitia in IntraVascular UltraSound (IVUS) frames, which is crucial for diagnosis of many cardiovascular diseases and also for facilitating 3D reconstructions of human arteries. One of the most prevalent problems in medical image analysis is the lack of training data. To overcome this limitation, we propose a twofold solution. First, we introduce a deep architecture that is able to learn using a small number of training images and still achieves a high degree of generalization ability. Second, we strengthen the proposed DPU-Net by having a real-time augmentor control the image augmentation process. Our real-time augmentor contains specially-designed operations that simulate three types of IVUS artifacts and integrate them into the training images. We exhaustively assessed our twofold contribution over Balocco's standard publicly available IVUS 20 MHz and 40 MHz B-mode dataset, which contain 109 training image, 326 test images and 19 training images, 59 test images, respectively. Models are trained from scratch with the training images provided and evaluated with two commonly used metrics in the IVUS segmentation literature, namely Jaccard Measure (JM) and Hausdorff Distance (HD). Experimental results show that DPU-Net achieves 0.87 JM, 0.82 mm HD and 0.86 JM, 1.07 mm HD over 40 MHz dataset for segmenting the lumen and the media, respectively. Also, DPU-Net achieves 0.90 JM, 0.25 mm HD and 0.92 JM, 0.30 mm HD over 20 MHz images for segmenting the lumen and the media, respectively. In addition, DPU-Net outperforms existing methods by 8-15% in terms of HD distance. DPU-Net also shows a strong generalization property for predicting images in the test sets that contain a significant amount of major artifacts such as bifurcations, shadows, and side branches that are not common in the training set. Furthermore, DPU-Net runs within 0.03 s to segment each frame with a single modern GPU (Nvidia GTX 1080). The proposed work leverages modern deep learning-based method for segmentation of lumen and the media vessel walls in both 20 MHz and 40 MHz IVUS B-mode images and achieves state-of-the-art results without any manual intervention. The code is available online at https://github.com/Kulbear/IVUS-Ultrasonic.
Collapse
Affiliation(s)
- Ji Yang
- Department of Computing Science, University of Alberta, Canada.
| | - Mehdi Faraji
- Department of Computing Science, University of Alberta, Canada.
| | - Anup Basu
- Department of Computing Science, University of Alberta, Canada.
| |
Collapse
|
17
|
Hammouche A, Cloutier G, Tardif JC, Hammouche K, Meunier J. Automatic IVUS lumen segmentation using a 3D adaptive helix model. Comput Biol Med 2019; 107:58-72. [DOI: 10.1016/j.compbiomed.2019.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
|
18
|
Moshfegh A, Javadzadegan A, Mohammadi M, Ravipudi L, Cheng S, Martins R. Development of an innovative technology to segment luminal borders of intravascular ultrasound image sequences in a fully automated manner. Comput Biol Med 2019; 108:111-121. [PMID: 31003174 DOI: 10.1016/j.compbiomed.2019.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/09/2019] [Accepted: 03/09/2019] [Indexed: 11/17/2022]
Abstract
Although intravascular ultrasound (IVUS) is the commonest intravascular imaging modality, it still is inefficient for clinical use as it requires laborious manual analysis. This study demonstrates the feasibility of a near real-time fully automated technology for accurate identification, detection, and quantification of luminal borders in intravascular images. This technology uses a combination of the novel approaches of a self-tuning engine, dynamic and static masking systems, radar-wise scan, and contour correction cycle method. The performance of the computer algorithm developed based on this technology was tested on a sequence of IVUS and True Vessel Characterization (TVC) images obtained from the left anterior descending (LAD) artery of 6 patients with coronary artery disease. The accuracy of the algorithm was evaluated by comparing luminal borders traced manually with those detected automatically. The processing time of the developed algorithm was also tested on a Dell laptop with an Intel Core i7-8750H Processor (4.1 GHz with 6 cores, 9 MB Cache). Linear regression and Bland-Altman analyses indicated high correlation between manual and automatic tracings (Y = 0.80 × X+1.70, R2 = 0.88 & 0.67 ± 1.31 (bias±SD)). Whereas analysis of 2000 IVUS images using one CPU core with a 30% load took 23.12 min, the same analysis using six CPU cores with 90% load took 1.0 min. The performance, accuracy, and speed of the presented state-of-the-art technology demonstrates its capacity for use in clinical settings.
Collapse
Affiliation(s)
- Abouzar Moshfegh
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia; ANZAC Research Institute, The University of Sydney, Sydney, NSW, 2139, Australia.
| | - Ashkan Javadzadegan
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia; ANZAC Research Institute, The University of Sydney, Sydney, NSW, 2139, Australia
| | - Maryam Mohammadi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Lakshitha Ravipudi
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW, 2006, Australia
| | - Shaokoon Cheng
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ralph Martins
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia; School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Perth, Australia
| |
Collapse
|
19
|
Abstract
Computational cardiology is the scientific field devoted to the development of methodologies that enhance our mechanistic understanding, diagnosis and treatment of cardiovascular disease. In this regard, the field embraces the extraordinary pace of discovery in imaging, computational modeling, and cardiovascular informatics at the intersection of atherogenesis and vascular biology. This paper highlights existing methods, practices, and computational models and proposes new strategies to support a multidisciplinary effort in this space. We focus on the means by that to leverage and coalesce these multiple disciplines to advance translational science and computational cardiology. Analyzing the scientific trends and understanding the current needs we present our perspective for the future of cardiovascular treatment.
Collapse
|
20
|
Thin Cap Fibroatheroma Detection in Virtual Histology Images Using Geometric and Texture Features. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8091632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Atherosclerotic plaque rupture is the most common mechanism responsible for a majority of sudden coronary deaths. The precursor lesion of plaque rupture is thought to be a thin cap fibroatheroma (TCFA), or “vulnerable plaque”. Virtual Histology-Intravascular Ultrasound (VH-IVUS) images are clinically available for visualising colour-coded coronary artery tissue. However, it has limitations in terms of providing clinically relevant information for identifying vulnerable plaque. The aim of this research is to improve the identification of TCFA using VH-IVUS images. To more accurately segment VH-IVUS images, a semi-supervised model is developed by means of hybrid K-means with Particle Swarm Optimisation (PSO) and a minimum Euclidean distance algorithm (KMPSO-mED). Another novelty of the proposed method is fusion of different geometric and informative texture features to capture the varying heterogeneity of plaque components and compute a discriminative index for TCFA plaque, while the existing research on TCFA detection has only focused on the geometric features. Three commonly used statistical texture features are extracted from VH-IVUS images: Local Binary Patterns (LBP), Grey Level Co-occurrence Matrix (GLCM), and Modified Run Length (MRL). Geometric and texture features are concatenated in order to generate complex descriptors. Finally, Back Propagation Neural Network (BPNN), kNN (K-Nearest Neighbour), and Support Vector Machine (SVM) classifiers are applied to select the best classifier for classifying plaque into TCFA and Non-TCFA. The present study proposes a fast and accurate computer-aided method for plaque type classification. The proposed method is applied to 588 VH-IVUS images obtained from 10 patients. The results prove the superiority of the proposed method, with accuracy rates of 98.61% for TCFA plaque.
Collapse
|
21
|
Faraji M, Cheng I, Naudin I, Basu A. Segmentation of arterial walls in intravascular ultrasound cross-sectional images using extremal region selection. ULTRASONICS 2018; 84:356-365. [PMID: 29241056 DOI: 10.1016/j.ultras.2017.11.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Intravascular Ultrasound (IVUS) is an intra-operative imaging modality that facilitates observing and appraising the vessel wall structure of the human coronary arteries. Segmentation of arterial wall boundaries from the IVUS images is not only crucial for quantitative analysis of the vessel walls and plaque characteristics, but is also necessary for generating 3D reconstructed models of the artery. The aim of this study is twofold. Firstly, we investigate the feasibility of using a recently proposed region detector, namely Extremal Region of Extremum Level (EREL) to delineate the luminal and media-adventitia borders in IVUS frames acquired by 20 MHz probes. Secondly, we propose a region selection strategy to label two ERELs as lumen and media based on the stability of their textural information. We extensively evaluated our selection strategy on the test set of a standard publicly available dataset containing 326 IVUS B-mode images. We showed that in the best case, the average Hausdorff Distances (HD) between the extracted ERELs and the actual lumen and media were 0.22 mm and 0.45 mm, respectively. The results of our experiments revealed that our selection strategy was able to segment the lumen with ⩽0.3 mm HD to the gold standard even though the images contained major artifacts such as bifurcations, shadows, and side branches. Moreover, when there was no artifact, our proposed method was able to delineate media-adventitia boundaries with 0.31 mm HD to the gold standard. Furthermore, our proposed segmentation method runs in time that is linear in the number of pixels in each frame. Based on the results of this work, by using a 20 MHz IVUS probe with controlled pullback, not only can we now analyze the internal structure of human arteries more accurately, but also segment each frame during the pullback procedure because of the low run time of our proposed segmentation method.
Collapse
Affiliation(s)
- Mehdi Faraji
- Department of Computing Science, University of Alberta, Canada.
| | - Irene Cheng
- Department of Computing Science, University of Alberta, Canada.
| | | | - Anup Basu
- Department of Computing Science, University of Alberta, Canada.
| |
Collapse
|
22
|
Chen F, Ma R, Liu J, Zhu M, Liao H. Lumen and media-adventitia border detection in IVUS images using texture enhanced deformable model. Comput Med Imaging Graph 2018; 66:1-13. [PMID: 29481899 DOI: 10.1016/j.compmedimag.2018.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/30/2018] [Accepted: 02/12/2018] [Indexed: 10/18/2022]
Abstract
Lumen and media-adventitia (MA) borders in intravascular ultrasound (IVUS) images are critical for assessing the dimensions of vascular structures and providing plaque information in the diagnosis and navigation of vascular interventions. However, manual delineation of the lumen and MA borders is an intricate and time-consuming process. In this paper, a texture-enhanced deformable model (TEDM) is proposed to accurately detect these borders by incorporating texture information with the morphological factors of deformable model. An ensemble support vector machine classifier is used to classify IVUS pixels presented by texture features into different tissue types. The image regionalization maps of different tissue types are further used for texture enhancement modules in the TEDM. The proposed TEDM method has been tested on 1500 images from 15 clinical IVUS datasets by comparing with the manual delineations. Evaluation results demonstrate that our method can accurately detect lumen and MA surfaces with small surface distance errors of 0.17 and 0.19 mm, respectively. Accurate segmentation results provide 2D measurements of MA/lumen areas and 3D vessel visualizations for vascular interventions.
Collapse
Affiliation(s)
- Fang Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ruibin Ma
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Jia Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Mingyu Zhu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Hongen Liao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
23
|
IVUS-Net: An Intravascular Ultrasound Segmentation Network. LECTURE NOTES IN COMPUTER SCIENCE 2018. [DOI: 10.1007/978-3-030-04375-9_31] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Analysis of Cardiovascular Tissue Components for the Diagnosis of Coronary Vulnerable Plaque from Intravascular Ultrasound Images. JOURNAL OF HEALTHCARE ENGINEERING 2017; 2017:9837280. [PMID: 29065676 PMCID: PMC5320383 DOI: 10.1155/2017/9837280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/03/2017] [Accepted: 01/15/2017] [Indexed: 12/05/2022]
Abstract
The purpose of this study was to characterize cardiovascular tissue components and analyze the different tissue properties for predicting coronary vulnerable plaque from intravascular ultrasound (IVUS) images. For this purpose, sequential IVUS image frames were obtained from human coronary arteries using 20 MHz catheters. The plaque regions between the intima and media-adventitial borders were manually segmented in all IVUS images. Tissue components of the plaque regions were classified into having fibrous tissue (FT), fibrofatty tissue (FFT), necrotic core (NC), or dense calcium (DC). The media area and lumen diameter were also estimated simultaneously. In addition, the external elastic membrane (EEM) was computed to predict the vulnerable plaque after the tissue characterization. The reliability of manual segmentation was validated in terms of inter- and intraobserver agreements. The quantitative results found that the FT and the media as well as the NC would be good indicators for predicting vulnerable plaques in IVUS images. In addition, the lumen was not suitable for early diagnosis of vulnerable plaque because of the low significance compared to the other vessel parameters. To predict vulnerable plaque rupture, future study should have additional experiments using various tissue components, such as the EEM, FT, NC, and media.
Collapse
|
25
|
Zakeri FS, Setarehdan SK, Norouzi S. Automatic media-adventitia IVUS image segmentation based on sparse representation framework and dynamic directional active contour model. Comput Biol Med 2017; 89:561-572. [DOI: 10.1016/j.compbiomed.2017.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
|
26
|
Jodas DS, Pereira AS, Tavares JMRS. Automatic segmentation of the lumen region in intravascular images of the coronary artery. Med Image Anal 2017. [PMID: 28624754 DOI: 10.1016/j.media.2017.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Image assessment of the arterial system plays an important role in the diagnosis of cardiovascular diseases. The segmentation of the lumen and media-adventitia in intravascular (IVUS) images of the coronary artery is the first step towards the evaluation of the morphology of the vessel under analysis and the identification of possible atherosclerotic lesions. In this study, a fully automatic method for the segmentation of the lumen in IVUS images of the coronary artery is presented. The proposed method relies on the K-means algorithm and the mean roundness to identify the region corresponding to the potential lumen. An approach to identify and eliminate side branches on bifurcations is also proposed to delimit the area with the potential lumen regions. Additionally, an active contour model is applied to refine the contour of the lumen region. In order to evaluate the segmentation accuracy, the results of the proposed method were compared against manual delineations made by two experts in 326 IVUS images of the coronary artery. The average values of the Jaccard measure, Hausdorff distance, percentage of area difference and Dice coefficient were 0.88 ± 0.06, 0.29 ± 0.17 mm, 0.09 ± 0.07 and 0.94 ± 0.04, respectively, in 324 IVUS images successfully segmented. Additionally, a comparison with the studies found in the literature showed that the proposed method is slight better than the majority of the related methods that have been proposed. Hence, the new automatic segmentation method is shown to be effective in detecting the lumen in IVUS images without using complex solutions and user interaction.
Collapse
Affiliation(s)
- Danilo Samuel Jodas
- CAPES Foundation, Ministry of Education of Brazil, Brasília - DF, 70040-020, Brazil; Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal.
| | - Aledir Silveira Pereira
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Rua Cristóvão Colombo, 2265, 15054-000, S. J. do Rio Preto, Brazil.
| | - João Manuel R S Tavares
- Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal. http://www.fe.up.pt/~tavares
| |
Collapse
|
27
|
Zheng S, Bing-Ru L. Fast retrieval of calcification from sequential intravascular ultrasound gray-scale images. Biomed Mater Eng 2016; 27:183-95. [PMID: 27567774 DOI: 10.3233/bme-161575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Intravascular ultrasound (IVUS)-based tissue characterization is invaluable for the computer-aided diagnosis and interventional treatment of cardiac vessel diseases. Although the analysis of raw backscattered signals allows more accurate plaque characterization than gray-scale images, its applications are limited due to its nature of electrocardiogram-gated acquisition. Images acquired by IVUS devices that do not allow the acquisition of raw signals cannot be characterized. To address these limitations, we developed a method for fast frame-by-frame retrieval and location of calcification according to the jump features of radial gray-level variation curves from sequential IVUS gray-scale images. The proposed method consists of three main steps: (1) radial gray-level variation curves are extracted from each filtered polar view, (2) sequential images are preliminarily queried according to the maximal slopes of radial gray-level variation curves, and finally, (3) key frames that include calcification are selected through checking the gray-level features of successive pixel columns in the preliminary results. Experimental results with clinically acquired in vivo data sets indicate key frames that include calcification can be retrieved with the advantages of simplicity, high efficiency, and accuracy. Recognition results correlate well with manual characterization results obtained by experienced physicians and through virtual histology.
Collapse
Affiliation(s)
- Sun Zheng
- Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, China
| | - Liu Bing-Ru
- Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, China
| |
Collapse
|
28
|
A physics-based intravascular ultrasound image reconstruction method for lumen segmentation. Comput Biol Med 2016; 75:19-29. [DOI: 10.1016/j.compbiomed.2016.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/02/2016] [Accepted: 05/14/2016] [Indexed: 11/21/2022]
|
29
|
Lo Vercio L, Orlando JI, Del Fresno M, Larrabide I. Assessment of image features for vessel wall segmentation in intravascular ultrasound images. Int J Comput Assist Radiol Surg 2016; 11:1397-407. [PMID: 26811082 DOI: 10.1007/s11548-015-1345-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 12/24/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Intravascular ultrasound (IVUS) provides axial greyscale images, allowing the assessment of the vessel wall and the surrounding tissues. Several studies have described automatic segmentation of the luminal boundary and the media-adventitia interface by means of different image features. PURPOSE The aim of the present study is to evaluate the capability of some of the most relevant state-of-the-art image features for segmenting IVUS images. The study is focused on Volcano 20 MHz frames not containing plaque or containing fibrotic plaques, and, in principle, it could not be applied to frames containing shadows, calcified plaques, bifurcations and side vessels. METHODS Several image filters, textural descriptors, edge detectors, noise and spatial measures were taken into account. The assessment is based on classification techniques previously used for IVUS segmentation, assigning to each pixel a continuous likelihood value obtained using support vector machines (SVMs). To retrieve relevant features, sequential feature selection was performed guided by the area under the precision-recall curve (AUC-PR). RESULTS Subsets of relevant image features for lumen, plaque and surrounding tissues characterization were obtained, and SVMs trained with these features were able to accurately identify those regions. The experimental results were evaluated with respect to ground truth segmentations from a publicly available dataset, reaching values of AUC-PR up to 0.97 and Jaccard index close to 0.85. CONCLUSION Noise-reduction filters and Haralick's textural features denoted their relevance to identify lumen and background. Laws' textural features, local binary patterns, Gabor filters and edge detectors had less relevance in the selection process.
Collapse
Affiliation(s)
- Lucas Lo Vercio
- Pladema, UNICEN, Tandil, Argentina.
- CONICET, Tandil, Argentina.
| | | | | | | |
Collapse
|
30
|
Araki T, Banchhor SK, Londhe ND, Ikeda N, Radeva P, Shukla D, Saba L, Balestrieri A, Nicolaides A, Shafique S, Laird JR, Suri JS. Reliable and Accurate Calcium Volume Measurement in Coronary Artery Using Intravascular Ultrasound Videos. J Med Syst 2015; 40:51. [PMID: 26643081 DOI: 10.1007/s10916-015-0407-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/16/2015] [Indexed: 11/29/2022]
Abstract
Quantitative assessment of calcified atherosclerotic volume within the coronary artery wall is vital for cardiac interventional procedures. The goal of this study is to automatically measure the calcium volume, given the borders of coronary vessel wall for all the frames of the intravascular ultrasound (IVUS) video. Three soft computing fuzzy classification techniques were adapted namely Fuzzy c-Means (FCM), K-means, and Hidden Markov Random Field (HMRF) for automated segmentation of calcium regions and volume computation. These methods were benchmarked against previously developed threshold-based method. IVUS image data sets (around 30,600 IVUS frames) from 15 patients were collected using 40 MHz IVUS catheter (Atlantis® SR Pro, Boston Scientific®, pullback speed of 0.5 mm/s). Calcium mean volume for FCM, K-means, HMRF and threshold-based method were 37.84 ± 17.38 mm(3), 27.79 ± 10.94 mm(3), 46.44 ± 19.13 mm(3) and 35.92 ± 16.44 mm(3) respectively. Cross-correlation, Jaccard Index and Dice Similarity were highest between FCM and threshold-based method: 0.99, 0.92 ± 0.02 and 0.95 + 0.02 respectively. Student's t-test, z-test and Wilcoxon-test are also performed to demonstrate consistency, reliability and accuracy of the results. Given the vessel wall region, the system reliably and automatically measures the calcium volume in IVUS videos. Further, we validated our system against a trained expert using scoring: K-means showed the best performance with an accuracy of 92.80%. Out procedure and protocol is along the line with method previously published clinically.
Collapse
Affiliation(s)
- Tadashi Araki
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Sumit K Banchhor
- Department of Electrical Engineering, NIT Raipur, Chhattisgarh, India.,Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Narendra D Londhe
- Department of Electrical Engineering, NIT Raipur, Chhattisgarh, India.,Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Nobutaka Ikeda
- Cardiovascular Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| | - Petia Radeva
- Department MAIA, Computer Vision Centre, Cerdanyola del Vallés, University of Barcelona, Barcelona, Spain
| | - Devarshi Shukla
- Department of Electrical Engineering, NIT Raipur, Chhattisgarh, India.,Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, London, UK.,Vascular Diagnostic Centre, University of Cyprus, Nicosia, Cyprus
| | - Shoaib Shafique
- CorVasc Vascular Laboratory, 8433 Harcourt Rd #100, Indianapolis, IN, USA
| | - John R Laird
- UC Davis Vascular Centre, University of California, Davis, CA, USA
| | - Jasjit S Suri
- Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA. .,Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA. .,Department of Electrical Engineering, University of Idaho (Affl.), Moscow, ID, USA.
| |
Collapse
|
31
|
Gao Z, Hau WK, Lu M, Huang W, Zhang H, Wu W, Liu X, Zhang YT. Automated Framework for Detecting Lumen and Media-Adventitia Borders in Intravascular Ultrasound Images. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:2001-2021. [PMID: 25922134 DOI: 10.1016/j.ultrasmedbio.2015.03.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 06/04/2023]
Abstract
An automated framework for detecting lumen and media-adventitia borders in intravascular ultrasound images was developed on the basis of an adaptive region-growing method and an unsupervised clustering method. To demonstrate the capability of the framework, linear regression, Bland-Altman analysis and distance analysis were used to quantitatively investigate the correlation, agreement and spatial distance, respectively, between our detected borders and manually traced borders in 337 intravascular ultrasound images in vivo acquired from six patients. The results of these investigations revealed good correlation (r = 0.99), good agreement (>96.82% of results within the 95% confidence interval) and small average distance errors (lumen border: 0.08 mm, media-adventitia border: 0.10 mm) between the borders generated by the automated framework and the manual tracing method. The proposed framework was found to be effective in detecting lumen and media-adventitia borders in intravascular ultrasound images, indicating its potential for use in routine studies of vascular disease.
Collapse
Affiliation(s)
- Zhifan Gao
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Key Lab for Health Informatics, Chinese Academy of Sciences, Shenzhen, China
| | - William Kongto Hau
- Institute of Cardiovascular Medicine and Research, LiKaShing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Minhua Lu
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, China
| | - Wenhua Huang
- Institute of Clinical Anatomy, Southern Medical University, Guangzhou, China
| | - Heye Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Key Lab for Health Informatics, Chinese Academy of Sciences, Shenzhen, China.
| | - Wanqing Wu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Key Lab for Health Informatics, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Key Lab for Health Informatics, Chinese Academy of Sciences, Shenzhen, China
| | - Yuan-Ting Zhang
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Key Lab for Health Informatics, Chinese Academy of Sciences, Shenzhen, China; The Joint Research Centre for Biomedical Engineering, Department of Electronic Engineering, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
32
|
Zhao F, Xie X, Roach M. Computer Vision Techniques for Transcatheter Intervention. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2015; 3:1900331. [PMID: 27170893 PMCID: PMC4848047 DOI: 10.1109/jtehm.2015.2446988] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/10/2015] [Accepted: 06/09/2015] [Indexed: 12/02/2022]
Abstract
Minimally invasive transcatheter technologies have demonstrated substantial promise for the diagnosis and the treatment of cardiovascular diseases. For example, transcatheter aortic valve implantation is an alternative to aortic valve replacement for the treatment of severe aortic stenosis, and transcatheter atrial fibrillation ablation is widely used for the treatment and the cure of atrial fibrillation. In addition, catheter-based intravascular ultrasound and optical coherence tomography imaging of coronary arteries provides important information about the coronary lumen, wall, and plaque characteristics. Qualitative and quantitative analysis of these cross-sectional image data will be beneficial to the evaluation and the treatment of coronary artery diseases such as atherosclerosis. In all the phases (preoperative, intraoperative, and postoperative) during the transcatheter intervention procedure, computer vision techniques (e.g., image segmentation and motion tracking) have been largely applied in the field to accomplish tasks like annulus measurement, valve selection, catheter placement control, and vessel centerline extraction. This provides beneficial guidance for the clinicians in surgical planning, disease diagnosis, and treatment assessment. In this paper, we present a systematical review on these state-of-the-art methods. We aim to give a comprehensive overview for researchers in the area of computer vision on the subject of transcatheter intervention. Research in medical computing is multi-disciplinary due to its nature, and hence, it is important to understand the application domain, clinical background, and imaging modality, so that methods and quantitative measurements derived from analyzing the imaging data are appropriate and meaningful. We thus provide an overview on the background information of the transcatheter intervention procedures, as well as a review of the computer vision techniques and methodologies applied in this area.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Computer ScienceSwansea UniversitySwanseaSA2 8PPU.K.
| | - Xianghua Xie
- Department of Computer ScienceSwansea UniversitySwanseaSA2 8PPU.K.
| | - Matthew Roach
- Department of Computer ScienceSwansea UniversitySwanseaSA2 8PPU.K.
| |
Collapse
|
33
|
Athanasiou L, Sakellarios AI, Bourantas CV, Tsirka G, Siogkas P, Exarchos TP, Naka KK, Michalis LK, Fotiadis DI. Currently available methodologies for the processing of intravascular ultrasound and optical coherence tomography images. Expert Rev Cardiovasc Ther 2015; 12:885-900. [PMID: 24949801 DOI: 10.1586/14779072.2014.922413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Optical coherence tomography and intravascular ultrasound are the most widely used methodologies in clinical practice as they provide high resolution cross-sectional images that allow comprehensive visualization of the lumen and plaque morphology. Several methods have been developed in recent years to process the output of these imaging modalities, which allow fast, reliable and reproducible detection of the luminal borders and characterization of plaque composition. These methods have proven useful in the study of the atherosclerotic process as they have facilitated analysis of a vast amount of data. This review presents currently available intravascular ultrasound and optical coherence tomography processing methodologies for segmenting and characterizing the plaque area, highlighting their advantages and disadvantages, and discusses the future trends in intravascular imaging.
Collapse
Affiliation(s)
- Lambros Athanasiou
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, GR 45110 Ioannina, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Coronary Plaque Boundary Enhancement in IVUS Image by Using a Modified Perona-Malik Diffusion Filter. Int J Biomed Imaging 2014; 2014:740627. [PMID: 25506357 PMCID: PMC4259135 DOI: 10.1155/2014/740627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/06/2014] [Indexed: 11/24/2022] Open
Abstract
We propose a modified Perona-Malik diffusion (PMD) filter to enhance a coronary plaque boundary by considering the conditions peculiar to an intravascular ultrasound (IVUS) image. The IVUS image is commonly used for a diagnosis of acute coronary syndrome (ACS). The IVUS image is however very grainy due to heavy speckle noise. When the normal PMD filter is applied for speckle noise reduction in the IVUS image, the coronary plaque boundary becomes vague. For this problem, we propose a modified PMD filter which is designed in special reference to the coronary plaque boundary detection. It can then not only reduce the speckle noise but also enhance clearly the coronary plaque boundary. After applying the modified PMD filter to the IVUS image, the coronary plaque boundaries are successfully detected further by applying the Takagi-Sugeno fuzzy model. The accuracy of the proposed method has been confirmed numerically by the experiments.
Collapse
|
35
|
Giannoglou VG, Theocharis JB. Decision Fusion of Multiple Classifiers for Coronary Plaque Characterization from IVUS Images. INT J ARTIF INTELL T 2014. [DOI: 10.1142/s0218213014600057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vascular tissue characterization is of great importance concerning the possibility of an Acute Cardiac Syndrome (ACS). Gray-scale intravascular ultrasound (IVUS) is a powerful tomographic modality providing a thorough visualization of coronary arteries. Among the existing methods, virtual histology (VH) is the most popular and clinically available technique for plaque component analysis, it suffers however from a poor longitudinal resolution. In order to surmount this demerit, a new image-based methodology for plaque assessment is suggested here that differentiates tissue components into four classes: calcium, necrotic core, fibrous and fibro-lipid. A rich set of five textural feature families are extracted from IVUS images, computed at different scales. The main contribution of this paper is that tissue classification is accomplished using the principles of multiple classifiers combination approach. At the first stage, an ensemble of base SVM classifiers is constructed from each feature family, separately. The fuzzy outputs of the individual classifiers are then aggregated to provide the final fused results. We investigate four efficient decision fusion schemes of the literature and the SVM fuser. Extensive experimentation is carried out to highlight the merits of the suggested schemes against single SVM classifiers that use reduced feature subsets obtained after feature selection or the entire feature space. The analysis demonstrates that the decision fusion techniques offer improved classification accuracies, compared to single SVM classifiers and existing methods in IVUS imaging. In addition, the method provides accurate assessments of plaque composition in IVUS images.
Collapse
Affiliation(s)
- V. G. Giannoglou
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - J. B. Theocharis
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
36
|
Computer methods for follow-up study of hemodynamic and disease progression in the stented coronary artery by fusing IVUS and X-ray angiography. Med Biol Eng Comput 2014; 52:539-56. [DOI: 10.1007/s11517-014-1155-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
|
37
|
Segmentation method of intravascular ultrasound images of human coronary arteries. Comput Med Imaging Graph 2014; 38:91-103. [DOI: 10.1016/j.compmedimag.2013.09.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 11/22/2022]
|
38
|
Standardized evaluation methodology and reference database for evaluating IVUS image segmentation. Comput Med Imaging Graph 2013; 38:70-90. [PMID: 24012215 DOI: 10.1016/j.compmedimag.2013.07.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 03/15/2013] [Accepted: 07/01/2013] [Indexed: 11/21/2022]
Abstract
This paper describes an evaluation framework that allows a standardized and quantitative comparison of IVUS lumen and media segmentation algorithms. This framework has been introduced at the MICCAI 2011 Computing and Visualization for (Intra)Vascular Imaging (CVII) workshop, comparing the results of eight teams that participated. We describe the available data-base comprising of multi-center, multi-vendor and multi-frequency IVUS datasets, their acquisition, the creation of the reference standard and the evaluation measures. The approaches address segmentation of the lumen, the media, or both borders; semi- or fully-automatic operation; and 2-D vs. 3-D methodology. Three performance measures for quantitative analysis have been proposed. The results of the evaluation indicate that segmentation of the vessel lumen and media is possible with an accuracy that is comparable to manual annotation when semi-automatic methods are used, as well as encouraging results can be obtained also in case of fully-automatic segmentation. The analysis performed in this paper also highlights the challenges in IVUS segmentation that remains to be solved.
Collapse
|
39
|
Mendizabal-Ruiz EG, Rivera M, Kakadiaris IA. Segmentation of the luminal border in intravascular ultrasound B-mode images using a probabilistic approach. Med Image Anal 2013; 17:649-70. [DOI: 10.1016/j.media.2013.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 01/28/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
|
40
|
Ciompi F, Pujol O, Gatta C, Alberti M, Balocco S, Carrillo X, Mauri-Ferre J, Radeva P. HoliMAb: A holistic approach for Media–Adventitia border detection in intravascular ultrasound. Med Image Anal 2012; 16:1085-100. [DOI: 10.1016/j.media.2012.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 10/28/2022]
|
41
|
Vard A, Jamshidi K, Movahhedinia N. An automated approach for segmentation of intravascular ultrasound images based on parametric active contour models. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2012; 35:135-50. [DOI: 10.1007/s13246-012-0131-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/19/2012] [Indexed: 11/29/2022]
|
42
|
Eisenbrey JR, Sridharan A, deMuinck ED, Doyley MM, Forsberg F. Parametric subharmonic imaging using a commercial intravascular ultrasound scanner: an in vivo feasibility study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2012; 31:361-71. [PMID: 22368126 PMCID: PMC3576695 DOI: 10.7863/jum.2012.31.3.361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
OBJECTIVES The feasibility of visualizing atherosclerotic plaque using parametric subharmonic intravascular ultrasound (IVUS) was investigated in vivo. METHODS Atherosclerosis was induced in the aorta of 2 rabbits. Following injection of Definity (Lantheus Medical Imaging, North Billerica, MA), radiofrequency IVUS signals were acquired at 40 MHz with a Galaxy IVUS scanner (Boston Scientific/Scimed, Natick, MA). Subharmonic imaging (SHI; receiving at 20 MHz) was performed offline by applying an 8-order equalization filter. Contrast-to-tissue ratios (CTRs) were computed for the vessel relative to the plaque area over 4 time points. Contrast-to-tissue ratios were also calculated for the plaque-tissue and vessel-tissue from 4 tissue regions of interest at 4 time points. Finally, parametric images showing the cumulative maximum intensity (CMI), time to peak, perfusion (PER), and time-integrated intensity (TII) were generated for the fundamental and subharmonic data sets, and CTR measurements were repeated. RESULTS Injection of the contrast agent resulted in improved delineation between plaque and the vessel lumen. Subharmonic imaging resulted in noticeable tissue suppression, although the intensity from the contrast agent was reduced. No significant improvement in the plaque to vessel lumen CTR was observed between the subharmonic and fundamental IVUS (2.1 ± 3.64 versus 2.2 ± 4.20; P = .5). However, the CTR for plaque-tissue was improved (11.8 ± 7.32 versus 9.9 ± 7.06; P < .0001) for SHI relative to fundamental imaging. Cumulative-maximum-intensity and TII maps of both fundamental and subharmonic data provided increased CTRs relative to nonparametric data sets (P < .002). Additionally, the CMI, PER, and TII of SHI IVUS showed significantly improved vessel-plaque CTRs for SHI relative to the fundamental (P < .04). CONCLUSIONS Parametric SHI IVUS of atherosclerotic plaque is feasible and improves the visualization of the plaque.
Collapse
Affiliation(s)
- John R Eisenbrey
- Department of Radiology, Thomas Jefferson University, 137 S 10th St, 7 Main, Suite 763J, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
43
|
Katouzian A, Angelini ED, Carlier SG, Suri JS, Navab N, Laine AF. A state-of-the-art review on segmentation algorithms in intravascular ultrasound (IVUS) images. ACTA ACUST UNITED AC 2012; 16:823-34. [PMID: 22389156 DOI: 10.1109/titb.2012.2189408] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Over the past two decades, intravascular ultrasound (IVUS) image segmentation has remained a challenge for researchers while the use of this imaging modality is rapidly growing in catheterization procedures and in research studies. IVUS provides cross-sectional grayscale images of the arterial wall and the extent of atherosclerotic plaques with high spatial resolution in real time. In this paper, we review recently developed image processing methods for the detection of media-adventitia and luminal borders in IVUS images acquired with different transducers operating at frequencies ranging from 20 to 45 MHz. We discuss methodological challenges, lack of diversity in reported datasets, and weaknesses of quantification metrics that make IVUS segmentation still an open problem despite all efforts. In conclusion, we call for a common reference database, validation metrics, and ground-truth definition with which new and existing algorithms could be benchmarked.
Collapse
|
44
|
Taki A, Hetterich H, Roodaki A, Setarehdan SK, Unal G, Rieber J, Navab N, König A. A new approach for improving coronary plaque component analysis based on intravascular ultrasound images. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:1245-1258. [PMID: 20691915 DOI: 10.1016/j.ultrasmedbio.2010.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 04/26/2010] [Accepted: 05/08/2010] [Indexed: 05/29/2023]
Abstract
Virtual histology intravascular ultrasound (VH-IVUS) is a clinically available technique for atherosclerosis plaque characterization. It, however, suffers from a poor longitudinal resolution due to electrocardiogram (ECG)-gated acquisition. This article presents an effective algorithm for IVUS image-based histology to overcome this limitation. After plaque area extraction within an input IVUS image, a textural analysis procedure consisting of feature extraction and classification steps is proposed. The pixels of the extracted plaque area excluding the shadow region were classified into one of the three plaque components of fibro-fatty (FF), calcification (CA) or necrotic core (NC) tissues. The average classification accuracy for pixel and region based validations is 75% and 87% respectively. Sensitivities (specificities) were 79% (85%) for CA, 81% (90%) for FF and 52% (82%) for NC. The kappa (kappa) = 0.61 and p value = 0.02 indicate good agreement of the proposed method with VH images. Finally, the enhancement in the longitudinal resolution was evaluated by reconstructing the IVUS images between the two sequential IVUS-VH images.
Collapse
Affiliation(s)
- Arash Taki
- Department of Computer Aided Medical Procedures (CAMP), Technical University of Munich (TUM), Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|