1
|
Xiang B, Heiselman JS, Richey WL, D’Angelica MI, Wei A, Kingham TP, Servin F, Pereira K, Geevarghese SK, Jarnagin WR, Miga MI. Comparison study of intraoperative surface acquisition methods on registration accuracy for soft-tissue surgical navigation. J Med Imaging (Bellingham) 2024; 11:025001. [PMID: 38445222 PMCID: PMC10911768 DOI: 10.1117/1.jmi.11.2.025001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Purpose To study the difference between rigid registration and nonrigid registration using two forms of digitization (contact and noncontact) in human in vivo liver surgery. Approach A Conoprobe device attachment and sterilization process was developed to enable prospective noncontact intraoperative acquisition of organ surface data in the operating room (OR). The noncontact Conoprobe digitization method was compared against stylus-based acquisition in the context of image-to-physical registration for image-guided surgical navigation. Data from n = 10 patients undergoing liver resection were analyzed under an Institutional Review Board-approved study at Memorial Sloan Kettering Cancer Center. Organ surface coverage of each surface acquisition method was compared. Registration accuracies resulting from the acquisition techniques were compared for (1) rigid registration method (RRM), (2) model-based nonrigid registration method (NRM) using surface data only, and (3) NRM with one subsurface feature (vena cava) from tracked intraoperative ultrasound (NRM-VC). Novel vessel centerline and tumor targets were segmented and compared to their registered preoperative counterparts for accuracy validation. Results Surface data coverage collected by stylus and Conoprobe were 24.6 % ± 6.4 % and 19.6 % ± 5.0 % , respectively. The average difference between stylus data and Conoprobe data using NRM was - 1.05 mm and using NRM-VC was - 1.42 mm , indicating the registrations to Conoprobe data performed worse than to stylus data with both NRM approaches. However, using the stylus and Conoprobe acquisition methods led to significant improvement of NRM-VC over RRM by average differences of 4.48 and 3.66 mm, respectively. Conclusion The first use of a sterile-field amenable Conoprobe surface acquisition strategy in the OR is reported for open liver surgery. Under clinical conditions, the nonrigid registration significantly outperformed standard-of-care rigid registration, and acquisition by contact-based stylus and noncontact-based Conoprobe produced similar registration results. The accuracy benefits of noncontact surface acquisition with a Conoprobe are likely obscured by inferior data coverage and intrinsic noise within acquisition systems.
Collapse
Affiliation(s)
- Bowen Xiang
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
- Vanderbilt Institute for Surgery and Engineering, Nashville, Tennessee, United States
| | - Jon S. Heiselman
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
- Vanderbilt Institute for Surgery and Engineering, Nashville, Tennessee, United States
- Memorial Sloan Kettering Cancer Center, Hepatopancreatobiliary Service, Department of Surgery, New York, New York, United States
| | - Winona L. Richey
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
- Vanderbilt Institute for Surgery and Engineering, Nashville, Tennessee, United States
| | - Michael I. D’Angelica
- Memorial Sloan Kettering Cancer Center, Hepatopancreatobiliary Service, Department of Surgery, New York, New York, United States
| | - Alice Wei
- Memorial Sloan Kettering Cancer Center, Hepatopancreatobiliary Service, Department of Surgery, New York, New York, United States
| | - T. Peter Kingham
- Memorial Sloan Kettering Cancer Center, Hepatopancreatobiliary Service, Department of Surgery, New York, New York, United States
| | - Frankangel Servin
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
- Vanderbilt Institute for Surgery and Engineering, Nashville, Tennessee, United States
| | - Kyvia Pereira
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
- Vanderbilt Institute for Surgery and Engineering, Nashville, Tennessee, United States
| | - Sunil K. Geevarghese
- Vanderbilt University Medical Center, Division of Hepatobiliary Surgery and Liver Transplantation, Nashville, Tennessee, United States
| | - William R. Jarnagin
- Memorial Sloan Kettering Cancer Center, Hepatopancreatobiliary Service, Department of Surgery, New York, New York, United States
| | - Michael I. Miga
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
- Vanderbilt Institute for Surgery and Engineering, Nashville, Tennessee, United States
- Vanderbilt University Medical Center, Department of Neurological Surgery, Nashville, Tennessee, United States
- Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, Tennessee, United States
- Vanderbilt University Medical Center, Department of Otolaryngology–Head and Neck Surgery, Nashville, Tennessee, United States
| |
Collapse
|
2
|
Jiang Z, Zhou Y, Cao D, Navab N. DefCor-Net: Physics-aware ultrasound deformation correction. Med Image Anal 2023; 90:102923. [PMID: 37688982 DOI: 10.1016/j.media.2023.102923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/22/2023] [Accepted: 08/01/2023] [Indexed: 09/11/2023]
Abstract
The recovery of morphologically accurate anatomical images from deformed ones is challenging in ultrasound (US) image acquisition, but crucial to accurate and consistent diagnosis, particularly in the emerging field of computer-assisted diagnosis. This article presents a novel physics-aware deformation correction approach based on a coarse-to-fine, multi-scale deep neural network (DefCor-Net). To achieve pixel-wise performance, DefCor-Net incorporates biomedical knowledge by estimating pixel-wise stiffness online using a U-shaped feature extractor. The deformation field is then computed using polynomial regression by integrating the measured force applied by the US probe. Based on real-time estimation of pixel-by-pixel tissue properties, the learning-based approach enables the potential for anatomy-aware deformation correction. To demonstrate the effectiveness of the proposed DefCor-Net, images recorded at multiple locations on forearms and upper arms of six volunteers are used to train and validate DefCor-Net. The results demonstrate that DefCor-Net can significantly improve the accuracy of deformation correction to recover the original geometry (Dice Coefficient: from 14.3±20.9 to 82.6±12.1 when the force is 6N). Code:https://github.com/KarolineZhy/DefCorNet.
Collapse
Affiliation(s)
- Zhongliang Jiang
- Computer Aided Medical Procedures, Technical University of Munich, Munich, Germany.
| | - Yue Zhou
- Computer Aided Medical Procedures, Technical University of Munich, Munich, Germany
| | | | - Nassir Navab
- Computer Aided Medical Procedures, Technical University of Munich, Munich, Germany; Computer Aided Medical Procedures, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Li Q, Zhang F, Xi Q, Jiao Z, Ni X. Nondeformed Ultrasound Image Production Method for Ultrasound-Guided Radiotherapy. Technol Cancer Res Treat 2023; 22:15330338231194546. [PMID: 37700675 PMCID: PMC10501062 DOI: 10.1177/15330338231194546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 09/14/2023] Open
Abstract
Purpose: During ultrasound (US)-guided radiotherapy, the tissue is deformed by probe pressure, and the US image is limited by changes in tissue and organ position and geometry when the US image is aligned with computed tomography (CT) image, leading to poor alignment. Accordingly, a pixel displacement-based nondeformed US image production method is proposed. Methods: The correction of US image deformation is achieved by calculating the pixel displacement of an image. The positioning CT image (CTstd) is used as the gold standard. The deformed US image (USdef) is inputted into the Harris algorithm to extract corner points for selecting feature points, and the displacement of adjacent pixels of feature points in the US video stream is calculated using the Lucas-Kanade optical flow algorithm. The moving least squares algorithm is used to correct USdef globally and locally in accordance with image pixel displacement to generate a nondeformed US image (USrev). In addition, USdef and USrev were separately aligned with CTstd to evaluate the improvement of alignment accuracy through deformation correction. Results: In the phantom experiment, the overall and local average correction errors of the US image under the optimal probe pressure were 1.0944 and 0.7388 mm, respectively, and the registration accuracy of USdef and USrev with CTstd was 0.6764 and 0.9016, respectively. During the volunteer experiment, the correction error of all 12 patients' data ranged from -1.7525 to 1.5685 mm, with a mean absolute error of 0.8612 mm. The improvement range of US and CT registration accuracy, before and after image deformation correction in the 12 patients evaluated by a normalized correlation coefficient, was 0.1232 to 0.2476. Conclusion: The pixel displacement-based deformation correction method can solve the limitation imposed by image deformation on image alignment in US-guided radiotherapy. Compared with USdef, the alignment results of USrev with CT were better.
Collapse
Affiliation(s)
- Qixuan Li
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China
- Department of Radiotherapy, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, China
- Center for Medical Physics, Nanjing Medical University, Changzhou, China
| | - Fan Zhang
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China
- Department of Radiotherapy, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, China
- Center for Medical Physics, Nanjing Medical University, Changzhou, China
| | - Qianyi Xi
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China
- Department of Radiotherapy, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, China
- Center for Medical Physics, Nanjing Medical University, Changzhou, China
| | - Zhuqing Jiao
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China
- School of Computer and Artificial Intelligence, Changzhou University, Changzhou, China
| | - Xinye Ni
- Department of Radiotherapy, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, China
- Center for Medical Physics, Nanjing Medical University, Changzhou, China
| |
Collapse
|
4
|
Richey WL, Heiselman JS, Ringel MJ, Meszoely IM, Miga MI. Computational Imaging to Compensate for Soft-Tissue Deformations in Image-Guided Breast Conserving Surgery. IEEE Trans Biomed Eng 2022; 69:3760-3771. [PMID: 35604993 PMCID: PMC9811993 DOI: 10.1109/tbme.2022.3177044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE During breast conserving surgery (BCS), magnetic resonance (MR) images aligned to accurately display intraoperative lesion locations can offer improved understanding of tumor extent and position relative to breast anatomy. Unfortunately, even under consistent supine conditions, soft tissue deformation compromises image-to-physical alignment and results in positional errors. METHODS A finite element inverse modeling technique has been developed to nonrigidly register preoperative supine MR imaging data to the surgical scene for improved localization accuracy during surgery. Registration is driven using sparse data compatible with acquisition during BCS, including corresponding surface fiducials, sparse chest wall contours, and the intra-fiducial skin surface. Deformation predictions were evaluated at surface fiducial locations and subsurface tissue features that were expertly identified and tracked. Among n = 7 different human subjects, an average of 22 ± 3 distributed subsurface targets were analyzed in each breast volume. RESULTS The average target registration error (TRE) decreased significantly when comparing rigid registration to this nonrigid approach (10.4 ± 2.3 mm vs 6.3 ± 1.4 mm TRE, respectively). When including a single subsurface feature as additional input data, the TRE significantly improved further (4.2 ± 1.0 mm TRE), and in a region of interest within 15 mm of a mock biopsy clip TRE was 3.9 ± 0.9 mm. CONCLUSION These results demonstrate accurate breast deformation estimates based on sparse-data-driven model predictions. SIGNIFICANCE The data suggest that a computational imaging approach can account for image-to-surgery shape changes to enhance surgical guidance during BCS.
Collapse
|