1
|
Wilcox S, Sengupta S, Huang C, Tokuda J, Lu A, Woodrum D, Chen Y. Development of a Low-Profile, Piezoelectric Robot for MR-Guided Abdominal Needle Interventions. Ann Biomed Eng 2025:10.1007/s10439-025-03719-w. [PMID: 40266438 DOI: 10.1007/s10439-025-03719-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/25/2025] [Indexed: 04/24/2025]
Abstract
PURPOSE Minimally invasive needle-based interventions are commonly used in cancer diagnosis and treatment, including procedures, such as biopsy, brachytherapy, and microwave ablation. Although MR-guided needle placement offers several distinct advantages, such as high-resolution target visualization and accurate device tracking, one of the primary limitations that affect its widespread adoption is the ergonomic constraints of the closed-bore MRI environment, requiring the patients to be frequently moved in and out to perform the needle-based procedures. This paper introduces a low-profile, body-mounted, MR-guided robot designed to address this limitation by streamlining the operation workflow and enabling accurate needle placement within the MRI scanner. METHODS The robot employs piezoelectric linear actuators and stacked Cartesian XY stages to precisely control the position and orientation of a needle guide. A kinematic model and control framework was developed to facilitate accurate targeting. Additionally, clinical workflow for the liver interventions was developed to demonstrate the robot's capability to replicate existing procedures. The proposed system was validated in benchtop environment and 3T MRI scanner to quantify the system performance. RESULTS Experimental validations conducted in free space demonstrated a position accuracy of 2.38 ± 0.94 mm and orientation error of 1.40 ± 2.89°. Additional tests to confirm MR-conditionality and MR-guided phantom placements were carried out to assess the system's performance and safety in MRI suite, yielding a position error of 2.01 ± 0.77 mm and an orientation error of 1.57 ± 1.31°. CONCLUSION The presented robot shows exceptional compatibility with a wide range of patients and bore sizes while maintaining clinically significant accuracy. Future work will focus on the validations in dynamic liver environments.
Collapse
Affiliation(s)
- Samuel Wilcox
- Institute of Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, 30332, USA
| | - Saikat Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Chuan Huang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Junichi Tokuda
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Aiming Lu
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - David Woodrum
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yue Chen
- Institute of Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, 30332, USA.
| |
Collapse
|
2
|
Ioannides C, Antoniou A, Zinonos V, Damianou C. Development and Preliminary Evaluation of a Robotic Device for MRI-Guided Needle Breast Biopsy. JOURNAL OF MEDICAL ROBOTICS RESEARCH 2024; 09. [DOI: 10.1142/s2424905x24500016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
This study concerns the development and evaluation of a simple and ergonomic robotic system for Magnetic Resonance Imaging (MRI)-guided needle breast biopsy with lateral needle approach. The device comprises two piezoelectrically actuated linear motion stages intended to align a needle supporter with the target for manual needle insertion. The device demonstrated submillimeter accuracy and safe operation within a 3 T clinical MRI scanner. In phantom studies, tumor simulators of varying sizes were successfully targeted in both laboratory and MRI settings.
Collapse
Affiliation(s)
- Cleanthis Ioannides
- Department of Interventional Radiology, German Oncology Center, 1 Nikis Avenue, 4108 Agios Athanasios, Limassol, Cyprus
| | - Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3036 Limassol, Cyprus
| | - Vasiliki Zinonos
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3036 Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3036 Limassol, Cyprus
| |
Collapse
|
3
|
Khanna R, Shah E. Robotics in Screening, Diagnosis and Treatment of Breast Cancer: A Perspective View. Clin Breast Cancer 2024; 24:17-26. [PMID: 37867115 DOI: 10.1016/j.clbc.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023]
Abstract
This perspective article aims to summarize and provide an outlook for developments around the use of robotics in the screening, diagnosis and treatment of breast cancer. We searched existing literature on the design and development of new systems and the current use of pre-existing surgical robotic systems. Robotic interventions for breast palpation and biopsy under ultrasound and MRI guidance are being developed and tested on simulated breast phantoms. Results are comparable to those achieved by clinicians; however, there are yet to be any human trials. Existing robotic surgical systems have been evaluated in human trials to perform nipple-sparing mastectomy and harvesting of autologous tissue for breast reconstruction. Results are comparable to traditional NSM and demonstrate positive short-term outcomes for patients. Robotic devices could revolutionize the clinical workflow around breast cancer through less invasive surgery, greater accuracy in biopsies and microsurgery and a potential reduction in clinicians' workload. However, more research into the practical deployment of these devices and concrete scientific evidence of better patient outcomes is needed.
Collapse
Affiliation(s)
- Raghav Khanna
- Faculty of Life Sciences and Medicine, King's College London, London, England.
| | | |
Collapse
|
4
|
An integrated navigation system based on a dedicated breast support device for MRI-guided breast biopsy. Int J Comput Assist Radiol Surg 2022; 17:993-1005. [PMID: 35489007 DOI: 10.1007/s11548-022-02640-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/08/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE Breast cancer is currently the cancer type with the highest incidence in the world, and it is extremely harmful to women's health. MRI-guided breast biopsy is a common method in clinical examination of breast cancer. However, traditional breast biopsy is less accurate and takes a long time. In this study, an integrated navigation system (INS) based on a dedicated breast support device (DBSD) was proposed to assist doctors in biopsy. METHODS The grid-shaped DBSD can reduce the displacement and deformation of the breast during the biopsy operation and is convenient for puncture. The robot system based on the DBSD is designed to assist doctors in performing puncture action. The software system has functions such as registration, path planning, and real-time tracking of biopsy needles based on the DBSD, which can assist doctors in completing the entire biopsy procedure. A series of experiments are designed to verify the feasibility and accuracy of the system. RESULTS Experiments prove that the robot system has reasonable structure and meets the requirements of MR compatibility. The latency of the INS during intraoperative navigation is 0.30 ± 0.03 s. In the phantom puncture experiment, the puncture error under the navigation of the INS is 1.04 ± 0.15 mm. CONCLUSION The INS proposed in this paper can be applied to assist doctors in breast biopsy in MR environment, improve the accuracy of biopsy and shorten the time of biopsy. The experimental results show that the system is feasible and accurate.
Collapse
|
5
|
Robust Deflected Path Planning Method for Superelastic Nitinol Coaxial Biopsy Needle: Application to an Automated Magnetic Resonance Image-Guided Breast Biopsy Robot. IEEE T ROBOT 2022. [DOI: 10.1109/tro.2021.3132837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Lu M, Zhang Y, Du H. Design and control of a novel magnetic resonance imaging-compatible breast intervention robot. INT J ADV ROBOT SYST 2020. [DOI: 10.1177/1729881420927853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is one of the most frequent cancers and a major cause of cancer death in women. In this article, the design and control of a novel magnetic resonance imaging-compatible breast intervention robot are proposed. The dimensions and tolerance of the robot system are considered, and a novel pitching mechanism is designed to achieve a dexterous operation in the limited space. The magnetic resonance imaging compatibility of the robot materials is tested. The nonmagnetic structure and compact Cartesian mechanism of the robot allow it to operate safely in a magnetic resonance imaging scanner. According to the robot’s structure, a kinematics analysis based on a coupled motions model is established. The workspace simulation analysis of the robot proves that it is suitable for the whole breast surgery. To control the needle insertion tasks, the overall control system in the form of “personal computer (PC) + single-chip micyoco (SCM)” is designed. Finally, the motion control experiment is carried out, and the robot positioning error is 0.37 mm, which proves that the breast intervention robot and its control system designed in this article can meet the requirements of breast intervention.
Collapse
Affiliation(s)
- Mingyue Lu
- Intelligent Machine Institute, Harbin University of Science and Technology, Harbin, China
- Foshan Baikang Robot Technology Co., Ltd., Foshan, China
| | - Yongde Zhang
- Intelligent Machine Institute, Harbin University of Science and Technology, Harbin, China
| | - Haiyan Du
- Intelligent Machine Institute, Harbin University of Science and Technology, Harbin, China
| |
Collapse
|
7
|
Gao P, Kong X, Song Y, Song Y, Fang Y, Ouyang H, Wang J. Recent Progress for the Techniques of MRI-Guided Breast Interventions and their applications on Surgical Strategy. J Cancer 2020; 11:4671-4682. [PMID: 32626513 PMCID: PMC7330700 DOI: 10.7150/jca.46329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/09/2020] [Indexed: 01/20/2023] Open
Abstract
With a high sensitivity of breast lesions, MRI can detect suspicious lesions which are occult in traditional breast examination equipment. However, the lower and variable specificity of MRI makes the MRI-guided intervention, including biopsies and localizations, necessary before surgery, especially for patients who need the treatment of breast-conserving surgery (BCS). MRI techniques and patient preparation should be first carefully considered before the intervention to avoid lengthening the procedure time and compromising targeting accuracy. Doctors and radiologists need to reconfirm the target of the lesion and be very familiar with the process approach and equipment techniques involving the computer-aided diagnosis (CAD) tools and the biopsy system and follow a correct way. The basic steps of MRI-guided biopsy and localization are nearly the same regardless of the vendor or platform, and this article systematically introduces detailed methods and techniques of MRI-guided intervention. The two interventions both face different challenging situations during procedures with solutions given in the article. Post-operative statistics show that the complications of MRI-guided intervention are infrequent and mild, and MRI-guided biopsy provides the pathological information for the subsequent surgical decisions and MRI-guided localization fully prepared for follow-up surgical biopsy. New techniques for MRI-guided intervention are also elaborated in the article, which leads to future development. In a word, MRI-guided intervention is a safe, accurate, and effective technique with a low complication rate and successful MRI-guided intervention is truly teamwork with efforts from patients to surgeons, radiologists, MRI technologists, and nurses.
Collapse
Affiliation(s)
- Peng Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ying Song
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yan Song
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Han Ouyang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
8
|
He Z, Dong Z, Fang G, Ho JDL, Cheung CL, Chang HC, Chong CCN, Chan JYK, Chan DTM, Kwok KW. Design of a Percutaneous MRI-Guided Needle Robot With Soft Fluid-Driven Actuator. IEEE Robot Autom Lett 2020. [DOI: 10.1109/lra.2020.2969929] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Kulkarni P, Sikander S, Biswas P, Frawley S, Song SE. Review of Robotic Needle Guide Systems for Percutaneous Intervention. Ann Biomed Eng 2019; 47:2489-2513. [PMID: 31372856 DOI: 10.1007/s10439-019-02319-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/02/2019] [Indexed: 01/24/2023]
Abstract
Numerous research groups in the past have designed and developed robotic needle guide systems that improve the targeting accuracy and precision by either providing a physical guidance for manual insertion or enabling a complete automated intervention. Here we review systems that have been reported in the last 11 years and limited to straight line needle interventions. Most systems fall under the category of image guided systems as they either use magnetic resonance image, computed tomography, ultrasound or a combination of these modalities for real time image feedback of the intervention path being followed. Actuation and control technology along with materials used for construction are the main aspects that differentiate these systems from each other and have been reviewed here. Image compatibility test details and results are also reviewed as they are used to ensure proper functioning of these systems under the respective imaging environments. We have also reviewed needle guide systems which either don't use any image feedback or have not reported any but provide physical guidance. Throughout this paper, we provide a comprehensive review of the technological aspects and trends in the field of robotic, straight line, needle guide intervention systems.
Collapse
Affiliation(s)
- Pankaj Kulkarni
- Department of Mechanical and Aerospace Engineering, University of Central Florida, 12760 Pegasus Dr., ENGR 1, Room 307, Orlando, FL, 32816-2450, USA
| | - Sakura Sikander
- Department of Mechanical and Aerospace Engineering, University of Central Florida, 12760 Pegasus Dr., ENGR 1, Room 307, Orlando, FL, 32816-2450, USA
| | - Pradipta Biswas
- Department of Mechanical and Aerospace Engineering, University of Central Florida, 12760 Pegasus Dr., ENGR 1, Room 307, Orlando, FL, 32816-2450, USA
| | - Shawn Frawley
- Department of Mechanical and Aerospace Engineering, University of Central Florida, 12760 Pegasus Dr., ENGR 1, Room 307, Orlando, FL, 32816-2450, USA
| | - Sang-Eun Song
- Department of Mechanical and Aerospace Engineering, University of Central Florida, 12760 Pegasus Dr., ENGR 1, Room 307, Orlando, FL, 32816-2450, USA.
| |
Collapse
|
10
|
Monfaredi R, Cleary K, Sharma K. MRI Robots for Needle-Based Interventions: Systems and Technology. Ann Biomed Eng 2018; 46:1479-1497. [PMID: 29922958 DOI: 10.1007/s10439-018-2075-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/11/2018] [Indexed: 01/13/2023]
Abstract
Magnetic resonance imaging (MRI) provides high-quality soft-tissue images of anatomical structures and radiation free imaging. The research community has focused on establishing new workflows, developing new technology, and creating robotic devices to change an MRI room from a solely diagnostic room to an interventional suite, where diagnosis and intervention can both be done in the same room. Closed bore MRI scanners provide limited access for interventional procedures using intraoperative imaging. MRI robots could improve access and procedure accuracy. Different research groups have focused on different technology aspects and anatomical structures. This paper presents the results of a systematic search of MRI robots for needle-based interventions. We report the most recent advances in the field, present relevant technologies, and discuss possible future advances. This survey shows that robotic-assisted MRI-guided prostate biopsy has received the most interest from the research community to date. Multiple successful clinical experiments have been reported in recent years that show great promise. However, in general the field of MRI robotic systems is still in the early stage. The continued development of these systems, along with partnerships with commercial vendors to bring this technology to market, is encouraged to create new and improved treatment opportunities for future patients.
Collapse
Affiliation(s)
- Reza Monfaredi
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, 111 Michigan ave. NW, Washington, DC, 20010, USA.
| | - Kevin Cleary
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, 111 Michigan ave. NW, Washington, DC, 20010, USA
| | - Karun Sharma
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, 111 Michigan ave. NW, Washington, DC, 20010, USA.,Diagnostic Imaging and Radiology Department, Children's National Health System, 111 Michigan ave. NW, Washington, DC, 20010, USA
| |
Collapse
|