1
|
Xu X, Zhao S, Gong L, Zuo S. A novel contact optimization algorithm for endomicroscopic surface scanning. Int J Comput Assist Radiol Surg 2024; 19:2031-2041. [PMID: 38970745 DOI: 10.1007/s11548-024-03223-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
PURPOSE Probe-based confocal laser endomicroscopy (pCLE) offers real-time, cell-level imaging and holds promise for early cancer diagnosis. However, a large area surface scanning for image acquisition is needed to overcome the limitation of field-of-view. Obtaining high-quality images during scanning requires maintaining a stable contact distance between the tissue and probe. This work presents a novel contact optimization algorithm to acquire high-quality pCLE images. METHODS The contact optimization algorithm, based on swarm intelligence of whale optimization algorithm, is designed to optimize the probe position, according to the quality of the image acquired by probe. An accurate image quality assessment of total co-occurrence entropy is introduced to evaluate the pCLE image quality. The algorithm aims to maintain a consistent probe-tissue contact, resulting in high-quality images acquisition. RESULTS Scanning experiments on sponge, ex vivo swine skin tissue and stomach tissue demonstrate the effectiveness of the contact optimization algorithm. Scanning results of the sponge with three different trajectories (spiral trajectory, circle trajectory, and raster trajectory) reveal high-quality mosaics with clear details in every part of the image and no blurred sections. CONCLUSION The contact optimization algorithm successfully identifies the optimal distance between probe and tissue, improving the quality of pCLE images. Experimental results confirm the high potential of this method in endomicroscopic surface scanning.
Collapse
Affiliation(s)
- Xingfeng Xu
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Shengzhe Zhao
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Lun Gong
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Siyang Zuo
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
2
|
Zhou Z, Yang J, Runciman M, Avery J, Sun Z, Mylonas G. A Tension Sensor Array for Cable-Driven Surgical Robots. SENSORS (BASEL, SWITZERLAND) 2024; 24:3156. [PMID: 38794010 PMCID: PMC11125287 DOI: 10.3390/s24103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Tendon-sheath structures are commonly utilized to drive surgical robots due to their compact size, flexibility, and straightforward controllability. However, long-distance cable tension estimation poses a significant challenge due to its frictional characteristics affected by complicated factors. This paper proposes a miniature tension sensor array for an endoscopic cable-driven parallel robot, aiming to integrate sensors into the distal end of long and flexible surgical instruments to sense cable tension and alleviate friction between the tendon and sheath. The sensor array, mounted at the distal end of the robot, boasts the advantages of a small size (16 mm outer diameter) and reduced frictional impact. A force compensation strategy was presented and verified on a platform with a single cable and subsequently implemented on the robot. The robot demonstrated good performance in a series of palpation tests, exhibiting a 0.173 N average error in force estimation and a 0.213 N root-mean-square error. In blind tests, all ten participants were able to differentiate between silicone pads with varying hardness through force feedback provided by a haptic device.
Collapse
Affiliation(s)
- Zhangxi Zhou
- The Hamlyn Centre, Institute of Global Health Innovation, Imperial College London, London W2 1PF, UK; (Z.Z.); (J.Y.); (M.R.); (J.A.)
| | - Jianlin Yang
- The Hamlyn Centre, Institute of Global Health Innovation, Imperial College London, London W2 1PF, UK; (Z.Z.); (J.Y.); (M.R.); (J.A.)
- State Key Laboratory of Mechanics and Control of Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
| | - Mark Runciman
- The Hamlyn Centre, Institute of Global Health Innovation, Imperial College London, London W2 1PF, UK; (Z.Z.); (J.Y.); (M.R.); (J.A.)
| | - James Avery
- The Hamlyn Centre, Institute of Global Health Innovation, Imperial College London, London W2 1PF, UK; (Z.Z.); (J.Y.); (M.R.); (J.A.)
| | - Zhijun Sun
- State Key Laboratory of Mechanics and Control of Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
| | - George Mylonas
- The Hamlyn Centre, Institute of Global Health Innovation, Imperial College London, London W2 1PF, UK; (Z.Z.); (J.Y.); (M.R.); (J.A.)
| |
Collapse
|
3
|
Giordano G, Gagliardi M, Huan Y, Carlotti M, Mariani A, Menciassi A, Sinibaldi E, Mazzolai B. Toward Mechanochromic Soft Material-Based Visual Feedback for Electronics-Free Surgical Effectors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100418. [PMID: 34075732 PMCID: PMC8336492 DOI: 10.1002/advs.202100418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/21/2021] [Indexed: 05/07/2023]
Abstract
A chromogenically reversible, mechanochromic pressure sensor is integrated into a mininvasive surgical grasper compatible with the da Vinci robotic surgical system. The sensorized effector, also featuring two soft-material jaws, encompasses a mechanochromic polymeric inset doped with functionalized spiropyran (SP) molecule, designed to activate mechanochromism at a chosen pressure and providing a reversible color change. Considering such tools are systematically in the visual field of the operator during surgery, color change of the mechanochromic effector can help avoid tissue damage. No electronics is required to control the devised visual feedback. SP-doping of polydimethylsiloxane (2.5:1 prepolymer/curing agent weight ratio) permits to modulate the mechanochromic activation pressure, with lower values around 1.17 MPa for a 2% wt. SP concentration, leading to a shorter chromogenic recovery time of 150 s at room temperature (25 °C) under green light illumination. Nearly three-times shorter recovery time is observed at body temperature (37 °C). To the best of knowledge, this study provides the first demonstration of mechanochromic materials in surgery, in particular to sensorize unpowered surgical effectors, by avoiding dramatic increases in tool complexity due to additional electronics, thus fostering their application. The proposed sensing strategy can be extended to further tools and scopes.
Collapse
Affiliation(s)
- Goffredo Giordano
- Center for Micro‐BioRoboticsItalian Institute of TechnologyViale Rinaldo Piaggio 34Pontedera (PI)56025Italy
- The BioRobotics InstituteScuola Superiore Sant'AnnaViale Rinaldo Piaggio 34Pontedera (PI)56025Italy
- Department of Excellence in Robotics and AIScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa (PI)56127Italy
| | - Mariacristina Gagliardi
- NESTScuola Normale Superiore and Istituto NanoscienzeConsiglio Nazionale delle RicerchePiazza S. Silvestro, 12Pisa (PI)56127Italy
| | - Yu Huan
- The BioRobotics InstituteScuola Superiore Sant'AnnaViale Rinaldo Piaggio 34Pontedera (PI)56025Italy
- Department of Excellence in Robotics and AIScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa (PI)56127Italy
| | - Marco Carlotti
- Center for Micro‐BioRoboticsItalian Institute of TechnologyViale Rinaldo Piaggio 34Pontedera (PI)56025Italy
| | - Andrea Mariani
- The BioRobotics InstituteScuola Superiore Sant'AnnaViale Rinaldo Piaggio 34Pontedera (PI)56025Italy
- Department of Excellence in Robotics and AIScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa (PI)56127Italy
| | - Arianna Menciassi
- The BioRobotics InstituteScuola Superiore Sant'AnnaViale Rinaldo Piaggio 34Pontedera (PI)56025Italy
- Department of Excellence in Robotics and AIScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa (PI)56127Italy
| | - Edoardo Sinibaldi
- Center for Micro‐BioRoboticsItalian Institute of TechnologyViale Rinaldo Piaggio 34Pontedera (PI)56025Italy
| | - Barbara Mazzolai
- Center for Micro‐BioRoboticsItalian Institute of TechnologyViale Rinaldo Piaggio 34Pontedera (PI)56025Italy
| |
Collapse
|
4
|
Ping Z, Zhang T, Gong L, Zhang C, Zuo S. Miniature Flexible Instrument with Fibre Bragg Grating-Based Triaxial Force Sensing for Intraoperative Gastric Endomicroscopy. Ann Biomed Eng 2021; 49:2323-2336. [PMID: 33880633 DOI: 10.1007/s10439-021-02781-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/11/2021] [Indexed: 11/28/2022]
Abstract
Optical biopsy methods, such as probe-based endomicroscopy, can be used to identify early-stage gastric cancer in vivo. However, it is difficult to scan a large area of the gastric mucosa for mosaicking during endoscopy. In this work, we propose a miniaturised flexible instrument based on contact-aided compliant mechanisms and fibre Bragg grating (FBG) sensing for intraoperative gastric endomicroscopy. The instrument has a compact design with an outer diameter of 2.7 mm, incorporating a central channel with a diameter of 1.9 mm for the endomicroscopic probe to pass through. Experimental results show that the instrument can achieve raster trajectory scanning over a large tissue surface with a positioning accuracy of 0.5 mm. The tip force sensor provides a 4.6 mN resolution for the axial force and 2.8 mN for transverse forces. Validation with random samples shows that the force sensor can provide consistent and accurate three-axis force detection. Endomicroscopic imaging experiments were conducted, and the flexible instrument performed no gap scanning (mosaicking area more than 3 mm2) and contact force monitoring during scanning, demonstrating the potential of the system in clinical applications.
Collapse
Affiliation(s)
- Zhongyuan Ping
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Tianci Zhang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Lun Gong
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Chi Zhang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Siyang Zuo
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
5
|
Saracino A, Oude-Vrielink TJC, Menciassi A, Sinibaldi E, Mylonas GP. Haptic Intracorporeal Palpation Using a Cable-Driven Parallel Robot: A User Study. IEEE Trans Biomed Eng 2020; 67:3452-3463. [PMID: 32746002 DOI: 10.1109/tbme.2020.2987646] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Intraoperative palpation is a surgical gesture jeopardized by the lack of haptic feedback which affects robotic minimally invasive surgery. Restoring the force reflection in teleoperated systems may improve both surgeons' performance and procedures' outcome. METHODS A force-based sensing approach was developed, based on a cable-driven parallel manipulator with anticipated seamless and low-cost integration capabilities in teleoperated robotic surgery. No force sensor on the end-effector is used, but tissue probing forces are estimated from measured cable tensions. A user study involving surgical trainees (n = 22) was conducted to experimentally evaluate the platform in two palpation-based test-cases on silicone phantoms. Two modalities were compared: visual feedback alone and both visual + haptic feedbacks available at the master site. RESULTS Surgical trainees' preference for the modality providing both visual and haptic feedback is corroborated by both quantitative and qualitative metrics. Hard nodules detection sensitivity improves (94.35 ± 9.1% vs 76.09 ± 19.15% for visual feedback alone), while also exerting smaller forces (4.13 ± 1.02 N vs 4.82 ± 0.81 N for visual feedback alone) on the phantom tissues. At the same time, the subjective perceived workload decreases. CONCLUSION Tissue-probe contact forces are estimated in a low cost and unique way, without the need of force sensors on the end-effector. Haptics demonstrated an improvement in the tumor detection rate, a reduction of the probing forces, and a decrease in the perceived workload for the trainees. SIGNIFICANCE Relevant benefits are demonstrated from the usage of combined cable-driven parallel manipulators and haptics during robotic minimally invasive procedures. The translation of robotic intraoperative palpation to clinical practice could improve the detection and dissection of cancer nodules.
Collapse
|
6
|
Runciman M, Avery J, Zhao M, Darzi A, Mylonas GP. Deployable, Variable Stiffness, Cable Driven Robot for Minimally Invasive Surgery. Front Robot AI 2020; 6:141. [PMID: 33501156 PMCID: PMC7805644 DOI: 10.3389/frobt.2019.00141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022] Open
Abstract
Minimally Invasive Surgery (MIS) imposes a trade-off between non-invasive access and surgical capability. Treatment of early gastric cancers over 20 mm in diameter can be achieved by performing Endoscopic Submucosal Dissection (ESD) with a flexible endoscope; however, this procedure is technically challenging, suffers from extended operation times and requires extensive training. To facilitate the ESD procedure, we have created a deployable cable driven robot that increases the surgical capabilities of the flexible endoscope while attempting to minimize the impact on the access that they offer. Using a low-profile inflatable support structure in the shape of a hollow hexagonal prism, our robot can fold around the flexible endoscope and, when the target site has been reached, achieve a 73.16% increase in volume and increase its radial stiffness. A sheath around the variable stiffness structure delivers a series of force transmission cables that connect to two independent tubular end-effectors through which standard flexible endoscopic instruments can pass and be anchored. Using a simple control scheme based on the length of each cable, the pose of the two instruments can be controlled by haptic controllers in each hand of the user. The forces exerted by a single instrument were measured, and a maximum magnitude of 8.29 N observed along a single axis. The working channels and tip control of the flexible endoscope remain in use in conjunction with our robot and were used during a procedure imitating the demands of ESD was successfully carried out by a novice user. Not only does this robot facilitate difficult surgical techniques, but it can be easily customized and rapidly produced at low cost due to a programmatic design approach.
Collapse
Affiliation(s)
- Mark Runciman
- Human-Centered Automation, Robotics and Monitoring in Surgery (HARMS) Lab, Department of Surgery and Cancer, The Hamlyn Center, Imperial College London, London, United Kingdom
| | - James Avery
- Department of Surgery and Cancer, The Hamlyn Center, Imperial College London, London, United Kingdom
| | - Ming Zhao
- Human-Centered Automation, Robotics and Monitoring in Surgery (HARMS) Lab, Department of Surgery and Cancer, The Hamlyn Center, Imperial College London, London, United Kingdom
| | - Ara Darzi
- Department of Surgery and Cancer, The Hamlyn Center, Imperial College London, London, United Kingdom
| | - George P Mylonas
- Human-Centered Automation, Robotics and Monitoring in Surgery (HARMS) Lab, Department of Surgery and Cancer, The Hamlyn Center, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Ping Z, Wang H, Chen X, Wang S, Zuo S. Modular Robotic Scanning Device for Real-Time Gastric Endomicroscopy. Ann Biomed Eng 2018; 47:563-575. [PMID: 30362081 DOI: 10.1007/s10439-018-02156-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/13/2018] [Indexed: 01/15/2023]
Abstract
Optical biopsy methods, such as probe-based endomicroscopy, can be used for the identification of early mucosal dysplasia in various gastrointestinal conditions and have potential applications in the screening of early-stage gastric cancer in vivo. However, it is difficult to scan a large area of the gastric mucosa for mosaicing during standard endoscopy. This paper proposes a novel 'snap-on' robotic scanning device that can integrate distally with a commercial endoscope. A customized low-cost endomicroscopy system is used for obtaining micro imaging. The developed device could scan a large area of gastric tissue during standard endoscopy. The device achieves positioning accuracy that is less than 0.23 mm. Experimental results showed that the device could achieve large area mosaicing (15.8-18.6 mm2) and demonstrated the potential clinical value of the device for real-time gastric tissue identification and margin assessment. This approach presents an important alternative to current histology techniques for gastrointestinal tract diagnosis.
Collapse
Affiliation(s)
- Zhongyuan Ping
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Haibo Wang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Shuxin Wang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Siyang Zuo
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|