1
|
von der Burchard C, Miura Y, Stanzel B, Chhablani J, Roider J, Framme C, Brinkmann R, Tode J. Regenerative Retinal Laser and Light Therapies (RELITE): Proposal of a New Nomenclature, Categorization, and Trial Reporting Standard. Lasers Surg Med 2024; 56:693-708. [PMID: 39210705 DOI: 10.1002/lsm.23833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/25/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Numerous laser and light therapies have been developed to induce regenerative processes in the choroid/retinal pigment epithelium (RPE)/photoreceptor complex, leaving the neuroretina undamaged. These therapies are applied to the macula for the treatment of various diseases, most prominently diabetic maculopathy, retinal vein occlusion, central serous chorioretinopathy, and age-related macular degeneration. However, the abundance of technologies, treatment patterns, and dosimetry protocols has made understanding these therapies and comparing different approaches increasingly complex and challenging. To address this, we propose a new nomenclature system with a clear categorization that will allow for better understanding and comparability between different laser and light modalities. We propose this nomenclature system as an open standard that may be adapted in future toward new technical developments or medical advancements. METHODS A systematic literature review of reported macular laser and light therapies was conducted. A categorization into a standardized system was proposed and discussed among experts and professionals in the field. This paper does not aim to assess, compare, or evaluate the efficacy of different laser or dosimetry techniques or treatment patterns. RESULTS The literature search yielded 194 papers describing laser techniques, 50 studies describing dosimetry, 272 studies with relevant clinical trials, and 82 reviews. Following the common therapeutic aim, we propose "regenerative retinal laser and light therapies (RELITE)" as the general header. We subdivided RELITE into four main categories that refer to the intended physical and biochemical effects of temperature increase (photothermal therapy, PTT), RPE regeneration (photomicrodisruption therapy, PMT), photochemical processes (photochemical therapy, PCT), and photobiomodulation (photobiomodulation therapy, PBT). Further, we categorized the different dosimetry approaches and treatment regimens. We propose the following nomenclature system that integrates the most important parameters to enable understanding and comparability: Pattern-Dosimetry-Exposure Time/Frequency, Duty Cycle/Irradiation Diameter/Wavelength-Subcategory-Category. CONCLUSION Regenerative retinal laser and light therapies are widely used for different diseases and may become valuable in the future. A precise nomenclature system and strict reporting standards are needed to allow for a better understanding, reproduceable and comparable clinical trials, and overall acceptance. We defined categories for a systematic therapeutic goal-based nomenclature to facilitate future research in this field.
Collapse
Affiliation(s)
- Claus von der Burchard
- Department of Ophthalmology, University of Kiel, University Medical Center of Schleswig-Holstein, Kiel, Germany
| | - Yoko Miura
- Institute of Biomedical Optics, University of Luebeck, Luebeck, Germany
- Department of Ophthalmology, University of Luebeck, University Medical Center of Schleswig-Holstein, Luebeck, Germany
| | - Boris Stanzel
- Eye Clinic Sulzbach, Knappschaft Hospital Saar, Sulzbach, Germany
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Johann Roider
- Department of Ophthalmology, University of Kiel, University Medical Center of Schleswig-Holstein, Kiel, Germany
| | - Carsten Framme
- Hannover Medical School, University Eye Clinic, Hannover, Germany
| | - Ralf Brinkmann
- Institute of Biomedical Optics, University of Luebeck, Luebeck, Germany
- Medical Laser Center Luebeck, Luebeck, Germany
| | - Jan Tode
- Hannover Medical School, University Eye Clinic, Hannover, Germany
| |
Collapse
|
2
|
Kim U, Kwon M, Jung G, Kim Y, Lee Y, Im S, Cense B, Lee H, Ohm WS, Joo C. Optical dosimeter for selective retinal therapy based on multi-port fiber-optic interferometry. BIOMEDICAL OPTICS EXPRESS 2021; 12:4920-4933. [PMID: 34513233 PMCID: PMC8407823 DOI: 10.1364/boe.434812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Selective retinal therapy (SRT) employs a micro-second short-pulse lasers to induce localized destruction of the targeted retinal structures with a pulse duration and power aimed at minimal damage to other healthy retinal cells. SRT has demonstrated a great promise in the treatment of retinal diseases, but pulse energy thresholds for effective SRT procedures should be determined precisely and in real time, as the thresholds could vary with disease status and patients. In this study, we present the use of a multi-port fiber-based interferometer (MFI) for highly sensitive real-time SRT monitoring. We exploit distinct phase differences among the fiber ports in the MFI to quantitatively measure localized fluctuations of complex-valued information during the SRT procedure. We evaluate several metrics that can be computed from the full complex-valued information and demonstrate that the complex contour integration is highly sensitive and most correlative to pulse energies, acoustic outputs, and cell deaths. The validity of our method was demonstrated on excised porcine retinas, with a sensitivity and specificity of 0.92 and 0.88, respectively, as compared with the results from a cell viability assay.
Collapse
Affiliation(s)
- Uihan Kim
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- These authors contributed equally to this work
| | - Minsung Kwon
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- These authors contributed equally to this work
| | - Gyeongyeon Jung
- Department of Research, Lutronic Corporation, 219 Sowon-ro, Goyang, 10534, Republic of Korea
| | - Youngnam Kim
- Department of Research, Lutronic Corporation, 219 Sowon-ro, Goyang, 10534, Republic of Korea
| | - Yunam Lee
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seonghun Im
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Barry Cense
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Optical and Biomedical Engineering Laboratory, Department of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Hyungsuk Lee
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Won-Suk Ohm
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chulmin Joo
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
3
|
Lee S, Wei S, Guo S, Kim J, Kim B, Kim G, Kang JU. Selective retina therapy monitoring by speckle variance optical coherence tomography for dosimetry control. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-9. [PMID: 32061065 PMCID: PMC7019183 DOI: 10.1117/1.jbo.25.2.026001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 01/29/2020] [Indexed: 05/29/2023]
Abstract
SIGNIFICANCE Selective retina therapy (SRT) selectively targets the retinal pigment epithelium (RPE) and reduces negative side effects by avoiding thermal damages of the adjacent photoreceptors, the neural retina, and the choroid. However, the selection of proper laser energy for the SRT is challenging because of ophthalmoscopically invisible lesions in the RPE and different melanin concentrations among patients or even regions within an eye. AIM We propose and demonstrate SRT monitoring based on speckle variance optical coherence tomography (svOCT) for dosimetry control. APPROACH M-scans, time-resolved sequence of A-scans, of ex vivo bovine retina irradiated by 1.7-μs duration laser pulses were obtained by a swept-source OCT. SvOCT images were calculated as interframe intensity variance of the sequence. Spatial and temporal temperature distributions in the retina were numerically calculated in a 2-D retinal model using COMSOL Multiphysics. Microscopic images of treated spots were obtained before and after removing the upper neural retinal layer to assess the damage in both RPE and neural layers. RESULTS SvOCT images show abrupt speckle variance changes when the retina is irradiated by laser pulses. The svOCT intensities averaged in RPE and photoreceptor layers along the axial direction show sharp peaks corresponding to each laser pulse, and the peak values were proportional to the laser pulse energy. The calculated temperatures in the neural retina layer and RPE were linearly fitted to the svOCT peak values, and the temperature of each lesion was estimated based on the fitting. The estimated temperatures matched well with previously reported results. CONCLUSION We found a reliable correlation between the svOCT peak values and the degree of retinal lesion formation, which can be used for selecting proper laser energy during SRT.
Collapse
Affiliation(s)
- Soohyun Lee
- Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States
| | - Shuwen Wei
- Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States
| | - Shoujing Guo
- Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States
| | | | | | - Gihoon Kim
- Lutronic Center, Goyang, Republic of Korea
| | - Jin U. Kang
- Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States
| |
Collapse
|