1
|
Pisano G, Wendler T, Valdés Olmos RA, Garganese G, Rietbergen DDD, Giammarile F, Vidal-Sicart S, Oonk MHM, Frumovitz M, Abu-Rustum NR, Scambia G, Rufini V, Collarino A. Molecular image-guided surgery in gynaecological cancer: where do we stand? Eur J Nucl Med Mol Imaging 2024; 51:3026-3039. [PMID: 38233609 PMCID: PMC11300493 DOI: 10.1007/s00259-024-06604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024]
Abstract
PURPOSE The aim of this review is to give an overview of the current status of molecular image-guided surgery in gynaecological malignancies, from both clinical and technological points of view. METHODS A narrative approach was taken to describe the relevant literature, focusing on clinical applications of molecular image-guided surgery in gynaecology, preoperative imaging as surgical roadmap, and intraoperative devices. RESULTS The most common clinical application in gynaecology is sentinel node biopsy (SNB). Other promising approaches are receptor-target modalities and occult lesion localisation. Preoperative SPECT/CT and PET/CT permit a roadmap for adequate surgical planning. Intraoperative detection modalities span from 1D probes to 2D portable cameras and 3D freehand imaging. CONCLUSION After successful application of radio-guided SNB and SPECT, innovation is leaning towards hybrid modalities, such as hybrid tracer and fusion of imaging approaches including SPECT/CT and PET/CT. Robotic surgery, as well as augmented reality and virtual reality techniques, is leading to application of these innovative technologies to the clinical setting, guiding surgeons towards a precise, personalised, and minimally invasive approach.
Collapse
Affiliation(s)
- Giusi Pisano
- Section of Nuclear Medicine, University Department of Radiological Sciences and Haematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Thomas Wendler
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
- Chair for Computer-Aided Medical Procedures and Augmented Reality, Technical University of Munich, Garching, Near Munich, Germany
| | - Renato A Valdés Olmos
- Interventional Molecular Imaging Laboratory & Section Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Giorgia Garganese
- Gynecologic Oncology Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Section of Obstetrics and Gynecology, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Daphne D D Rietbergen
- Interventional Molecular Imaging Laboratory & Section Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Francesco Giammarile
- Nuclear Medicine and Diagnostic Imaging Section, Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| | - Sergi Vidal-Sicart
- Nuclear Medicine Department, Hospital Clinic Barcelona, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain
| | - Maaike H M Oonk
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Michael Frumovitz
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nadeem R Abu-Rustum
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giovanni Scambia
- Gynecologic Oncology Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Section of Obstetrics and Gynecology, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vittoria Rufini
- Section of Nuclear Medicine, University Department of Radiological Sciences and Haematology, Università Cattolica del Sacro Cuore, Rome, Italy
- Nuclear Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Angela Collarino
- Nuclear Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
2
|
van Leeuwen FWB, Buckle T, Rietbergen DDD, van Oosterom MN. The realization of medical devices for precision surgery - development and implementation of ' stop-and-go' imaging technologies. Expert Rev Med Devices 2024; 21:349-358. [PMID: 38722051 DOI: 10.1080/17434440.2024.2341102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/05/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION Surgery and biomedical imaging encompass a big share of the medical-device market. The ever-mounting demand for precision surgery has driven the integration of these two into the field of image-guided surgery. A key-question herein is how imaging modalities can guide the surgical decision-making process. Through performance-based design, chemists, engineers, and doctors need to build a bridge between imaging technologies and surgical challenges. AREAS-COVERED This perspective article highlights the complementary nature between the technological design of an image-guidance modality and the type of procedure performed. The specific roles of the involved professionals, imaging technologies, and surgical indications are addressed. EXPERT-OPINION Molecular-image-guided surgery has the potential to advance pre-, intra- and post-operative tissue characterization. To achieve this, surgeons need the access to well-designed indication-specific chemical-agents and detection modalities. Hereby, some technologies stimulate exploration ('go'), while others stimulate caution ('stop'). However, failing to adequately address the indication-specific needs rises the risk of incorrect tool employment and sub-optimal surgical performance. Therefore, besides the availability of new technologies, market growth is highly dependent on the practical nature and impact on real-life clinical care. While urology currently takes the lead in the widespread implementation of image-guidance technologies, the topic is generic and its popularity spreads rapidly within surgical oncology.
Collapse
Affiliation(s)
- Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daphne D D Rietbergen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias N van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Ribera-Perianes J, Vega M, Cases Moreno X, Cordón J, Cortés Gracia J, Paredes P, Sánchez-Izquierdo N, Perissinotti A, Fuster Pelfort D, Vidal-Sicart S. Multidisciplinary radio-guided surgery team: Alternative to change the current paradigm. Rev Esp Med Nucl Imagen Mol 2024; 43:91-99. [PMID: 38387785 DOI: 10.1016/j.remnie.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/02/2023] [Indexed: 02/24/2024]
Abstract
INTRODUCTION Given the constant increase in the healthcare demand for examinations related to radio-guided surgery (RGS), our hospital adopted new professional profiles in the RGS team, in order to partially reduce the time spent by nuclear medicine physicians on this task. AIM To analyze the process of incorporating the profiles of Diagnostic Imaging Technician (DIT) and Sentinel Node Referent Nurse (SNRN), evaluating their deployment in the procedures linked to the technique. MATERIAL AND METHODS Analysis of RGS activity during the period 2018-2022, focusing on pre-surgical and surgical procedures related to breast cancer (BC) and malignant melanoma (MM), as they are those pathologies on which the transfer of care competencies was concentrated. Chronological evolution of the competencies assumed by the different profiles during their integration into the RGS team. RESULTS RGS's healthcare activity during the analyzed period experienced an increase of 109%. BC and MM were the pathologies that accounted for by far the greatest demand for care. The transfer of competencies in these two pathologies occurred in a progressive and staggered manner, with 74% (460/622) of the administration phase being carried out by the SNRN and 64% (333/519) of the surgeries by the DIT in 2022. CONCLUSIONS The creation of a multidisciplinary RGS team that includes different professional profiles (nuclear medicine physician [MN], ERGC and TSID) is an effective strategy to respond to the increase in the complexity and number of all procedures related to RGS.
Collapse
Affiliation(s)
| | - M Vega
- Nuclear Medicine Department, Clínic Barcelona, Barcelona, Spain
| | - X Cases Moreno
- Nuclear Medicine Department, Clínic Barcelona, Barcelona, Spain
| | - J Cordón
- Nuclear Medicine Department, Clínic Barcelona, Barcelona, Spain
| | - J Cortés Gracia
- Nuclear Medicine Department, Clínic Barcelona, Barcelona, Spain
| | - P Paredes
- Nuclear Medicine Department, Clínic Barcelona, Barcelona, Spain
| | | | - A Perissinotti
- Nuclear Medicine Department, Clínic Barcelona, Biomedical Research Networking Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | | | - S Vidal-Sicart
- Nuclear Medicine Department, Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
4
|
Boekestijn I, van Oosterom MN, Dell'Oglio P, van Velden FHP, Pool M, Maurer T, Rietbergen DDD, Buckle T, van Leeuwen FWB. The current status and future prospects for molecular imaging-guided precision surgery. Cancer Imaging 2022; 22:48. [PMID: 36068619 PMCID: PMC9446692 DOI: 10.1186/s40644-022-00482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/21/2022] [Indexed: 01/19/2023] Open
Abstract
Molecular imaging technologies are increasingly used to diagnose, monitor, and guide treatment of i.e., cancer. In this review, the current status and future prospects of the use of molecular imaging as an instrument to help realize precision surgery is addressed with focus on the main components that form the conceptual basis of intraoperative molecular imaging. Paramount for successful interventions is the relevance and accessibility of surgical targets. In addition, selection of the correct combination of imaging agents and modalities is critical to visualize both microscopic and bulk disease sites with high affinity and specificity. In this context developments within engineering/imaging physics continue to drive the growth of image-guided surgery. Particularly important herein is enhancement of sensitivity through improved contrast and spatial resolution, features that are critical if sites of cancer involvement are not to be overlooked during surgery. By facilitating the connection between surgical planning and surgical execution, digital surgery technologies such as computer-aided visualization nicely complement these technologies. The complexity of image guidance, combined with the plurality of technologies that are becoming available, also drives the need for evaluation mechanisms that can objectively score the impact that technologies exert on the performance of healthcare professionals and outcome improvement for patients.
Collapse
Affiliation(s)
- Imke Boekestijn
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthias N van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Paolo Dell'Oglio
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Urology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Floris H P van Velden
- Medical Physics, Department of Radiology , Leiden University Medical Center, Leiden, the Netherlands
| | - Martin Pool
- Department of Clinical Farmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tobias Maurer
- Martini-Klinik Prostate Cancer Centre Hamburg, Hamburg, Germany
| | - Daphne D D Rietbergen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
5
|
Vidal-Sicart S, Orsini F, Giammarile F, Mariani G, Valdés Olmos RA. Radioguided Surgery for Malignant Melanoma. NUCLEAR ONCOLOGY 2022:1595-1631. [DOI: 10.1007/978-3-031-05494-5_53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Manca G, Garau LM, Mazzarri S, Mazzuca L, Muccioli S, Ghilli M, Naccarato G, Colletti PM, Rubello D, Roncella M, Volterrani D, Desideri I. Novel Experience in Hybrid Tracers: Clinical Evaluation of Feasibility and Efficacy in Using ICG-99mTc Nanotop for Sentinel Node Procedure in Breast Cancer Patients. Clin Nucl Med 2021; 46:e181-e187. [PMID: 33323744 DOI: 10.1097/rlu.0000000000003478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The clinical introduction of a radioactive and fluorescent hybrid tracer allowed for preoperative lymphatic mapping and intraoperative real-time fluorescence tracing of the sentinel lymph node (SLN) by a single injection. The aim of this feasibility study is to evaluate the first-in-human use of the hybrid tracer by combining indocyanine green (ICG) and radiocolloid based on Nanotop compound (99mTc Nanotop) for SLN biopsy (SLNB) in breast cancer patients. METHODS The day before surgery, ICG-99mTc Nanotop was injected periareolarly in breast cancer patients scheduled for SLNB. Planar lymphoscintigraphic (PL) and SPECT/CT images were then acquired. An intraoperative optonuclear probe was used to detect SLN gamma and fluorescent signals. The harvested SLNs were examined by hematoxylin-eosin staining, and patients were clinically evaluated 1 month after surgery. RESULTS Twenty-one consecutive patients were enrolled. The PL and SPECT/CT techniques identified at least 1 SLN in all patients for a preoperative sentinel detection rate of 100%. SPECT/CT revealed 3 additional lymph nodes in the same nodal basin, which had not been visualized on conventional PL (κ = 0.747; P < 0.005). All 30 preoperative SLNs were localized and excised up to 16 hours after injection. The counts measured via gamma tracing showed a very strong correlation with those measured via near-infrared fluorescent tracing (P < 0.005, r = 0.964). No adverse reactions were observed. CONCLUSIONS The SLNB technique used with the ICG-99mTc Nanotop tracer resulted to be feasible, reliable, and safe. This hybrid compound allowed us to obtain excellent performance in terms of both preoperative lymphatic mapping and intraoperative SLN detection in breast cancer patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Patrick M Colletti
- Division of Nuclear Medicine, Department of Radiology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA
| | - Domenico Rubello
- Nuclear Medicine Department, Santa Maria della Misericordia Hospital, Rovigo, Italy
| | | | | | | |
Collapse
|
7
|
Mihara K, Matsuda S, Nakamura Y, Aiura K, Kuwahata A, Chikaki S, Sekino M, Kusakabe M, Suzuki S, Fuchimoto D, Onishi A, Kuramoto J, Kameyama K, Itano O, Yagi H, Abe Y, Kitago M, Shinoda M, Kitagawa Y. Intraoperative laparoscopic detection of sentinel lymph nodes with indocyanine green and superparamagnetic iron oxide in a swine gallbladder cancer model. PLoS One 2021; 16:e0248531. [PMID: 33705492 PMCID: PMC7951925 DOI: 10.1371/journal.pone.0248531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/27/2021] [Indexed: 12/13/2022] Open
Abstract
Mapping of sentinel lymph nodes (SLNs) can enable less invasive surgery. However, mapping is challenging for cancers of difficult-to-access visceral organs, such as the gallbladder, because the standard method using radioisotopes (RIs) requires preoperative tracer injection. Indocyanine green (ICG) and superparamagnetic iron oxide (SPIO) have also been used as alternative tracers. In this study, we modified a previously reported magnetic probe for laparoscopic use and evaluated the feasibility of detecting SLNs of the gallbladder using a laparoscopic dual tracer method by injecting ICG and SPIO into five swine and one cancer-bearing swine. The laparoscopic probe identified SPIO nanoparticles in the nodes of 4/5 swine in situ, the magnetic field counts were 2.5-15.9 μT, and fluorescence was detected in SLNs in all five swine. ICG showed a visual lymph flow map, and SPIO more accurately identified each SLN with a measurable magnetic field quite similar to the RI. We then developed an advanced gallbladder cancer model with lymph node metastasis using recombination activating gene 2-knockout swine. We identified an SLN in the laparoscopic investigation, and the magnetic field count was 3.5 μT. The SLN was histologically determined to be one of the two metastatic lymph nodes. In conclusion, detecting the SLNs of gallbladder cancer in situ using a dual tracer laparoscopic technique with ICG and SPIO was feasible in a swine model.
Collapse
Affiliation(s)
- Kisyo Mihara
- Department of Surgery, Kawasaki Municipal Kawasaki Hospital, Kawasaki-ku, Kawasaki, Kanagawa, Japan
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Sachiko Matsuda
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yuki Nakamura
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Koichi Aiura
- Department of Surgery, Kawasaki Municipal Kawasaki Hospital, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| | - Akihiro Kuwahata
- Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shinichi Chikaki
- Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masaki Sekino
- Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Moriaki Kusakabe
- Graduate School of Agricultural and Life Sciences, Research Center for Food Safety, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Matrix Cell Research Institute, Inc., Ushiku, Ibaraki, Japan
| | - Shunichi Suzuki
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Daiichiro Fuchimoto
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Akira Onishi
- Laboratory of Animal Reproduction, Department of Animal Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Junko Kuramoto
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kaori Kameyama
- Department of Diagnostic Pathology, Keio University Hospital, Shinjuku-ku, Tokyo, Japan
| | - Osamu Itano
- Department of Gastrointestinal Surgery, International University of Health and Welfare, Chiba, Japan
| | - Hiroshi Yagi
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yuta Abe
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masahiro Shinoda
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
8
|
Rietbergen DD, VAN Oosterom MN, Kleinjan GH, Brouwer OR, Valdes-Olmos RA, VAN Leeuwen FW, Buckle T. Interventional nuclear medicine: a focus on radioguided intervention and surgery. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2021; 65:4-19. [PMID: 33494584 DOI: 10.23736/s1824-4785.21.03286-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Within interventional nuclear medicine (iNM) a prominent role is allocated for the sub-discipline of radioguided surgery. Unique for this discipline is the fact that an increasing number of clinical indications (e.g. lymphatic mapping, local tumor demarcation and/or tumor receptor targeted applications) have been adopted into routine care. The clinical integration is further strengthened by technical innovations in chemistry and engineering that enhance the translational potential of radioguided procedures in iNM. Together, these features not only ensure ongoing expansion of iNM but also warrant a lasting clinical impact for the sub-discipline of radioguided surgery.
Collapse
Affiliation(s)
- Daphne D Rietbergen
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Radiology, Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthias N VAN Oosterom
- Department of Radiology, Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, the Netherlands.,Department of Urology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Gijs H Kleinjan
- Department of Urology, Leiden University Medical Center, Leiden, the Netherlands
| | - Oscar R Brouwer
- Department of Radiology, Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, the Netherlands.,Department of Urology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Renato A Valdes-Olmos
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Fijs W VAN Leeuwen
- Department of Radiology, Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, the Netherlands.,Department of Urology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Tessa Buckle
- Department of Radiology, Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, the Netherlands - .,Department of Urology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| |
Collapse
|
9
|
van Oosterom MN, Meershoek P, Welling MM, Pinto F, Matthies P, Simon H, Wendler T, Navab N, van de Velde CJH, van der Poel HG, van Leeuwen FWB. Extending the Hybrid Surgical Guidance Concept With Freehand Fluorescence Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:226-235. [PMID: 31247546 DOI: 10.1109/tmi.2019.2924254] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Within image-guided surgery, 'hybrid' guidance technologies have been used to integrate the complementary features of radioactive guidance and fluorescence guidance. Here, we explore how the generation of a novel freehand fluorescence (fhFluo) imaging approach complements freehand SPECT (fhSPECT) in a hybrid setup. Near-infrared optical tracking was used to register the position and the orientation of a hybrid opto-nuclear detection probe while recording its readings. Dedicated look-up table models were used for 3D reconstruction. In phantom and excised tissue settings (i.e., flat-surface human skin explants), fhSPECT and fhFluo were investigated for image resolution and in-tissue signal penetration. Finally, the combined potential of these freehand technologies was evaluated on prostate and lymph node specimens of prostate cancer patients receiving prostatectomy and sentinel lymph node dissection (tracers: indocyanine green (ICG) +99m Tc-nanocolloid or ICG-99mTc-nanocolloid). After hardware and software integration, the hybrid setup created 3D nuclear and fluorescence tomography scans. The imaging resolution of fhFluo (1 mm) was superior to that of fhSPECT (6 mm). Fluorescence modalities were confined to a maximum depth of 0.5 cm, while nuclear modalities were usable at all evaluated depths (<2 cm). Both fhSPECT and fhFluo enabled augmented- and virtual-reality navigation toward segmented image hotspots, including relative hotspot quantification with an accuracy of 3.9% and 4.1%. Imaging in surgical specimens confirmed these trends (fhSPECT: in-depth detectability, low resolution, and fhFluo: superior resolution, superficial detectability). Overall, when radioactive and fluorescent tracer signatures are used, fhFluo has complementary value to fhSPECT. Combined the freehand technologies render a unique hybrid imaging and navigation modality.
Collapse
|
10
|
A Raman Imaging Approach Using CD47 Antibody-Labeled SERS Nanoparticles for Identifying Breast Cancer and Its Potential to Guide Surgical Resection. NANOMATERIALS 2018; 8:nano8110953. [PMID: 30463284 PMCID: PMC6265869 DOI: 10.3390/nano8110953] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/10/2018] [Accepted: 11/15/2018] [Indexed: 12/31/2022]
Abstract
Raman spectroscopic imaging has shown great promise for improved cancer detection and localization with the use of tumor targeting surface enhanced Raman scattering (SERS) nanoparticles. With the ultrasensitive detection and multiplexing capabilities that SERS imaging has to offer, scientists have been investigating several clinical applications that could benefit from this unique imaging strategy. Recently, there has been a push to develop new image-guidance tools for surgical resection to help surgeons sensitively and specifically identify tumor margins in real time. We hypothesized that SERS nanoparticles (NPs) topically applied to breast cancer resection margins have the potential to provide real-time feedback on the presence of residual cancer in the resection margins during lumpectomy. Here, we explore the ability of SERS nanoparticles conjugated with a cluster of differentiation-47 (CD47) antibody to target breast cancer. CD47 is a cell surface receptor that has recently been shown to be overexpressed on several solid tumor types. The binding potential of our CD47-labeled SERS nanoparticles was assessed using fluorescence assisted cell sorting (FACS) on seven different human breast cancer cell lines, some of which were triple negative (negative expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2)). Xenograft mouse models were also used to assess the ability of our Raman imaging system to identify tumor from normal tissue. A ratiometric imaging strategy was used to quantify specific vs. nonspecific probe binding, resulting in improved tumor-to-background ratios. FACS analysis showed that CD47-labeled SERS nanoparticles bound to seven different breast cancer cell lines at levels 12-fold to 70-fold higher than isotype control-labeled nanoparticles (p < 0.01), suggesting that our CD47-targeted nanoparticles actively bind to CD47 on breast cancer cells. In a mouse xenograft model of human breast cancer, topical application of CD47-targeted nanoparticles to excised normal and cancer tissue revealed increased binding of CD47-targeted nanoparticles on tumor relative to normal adjacent tissue. The findings of this study support further investigation and suggest that SERS nanoparticles topically applied to breast cancer could guide more complete surgical resection during lumpectomy.
Collapse
|