Krumb H, Das D, Chadda R, Mukhopadhyay A. CycleGAN for interpretable online EMT compensation.
Int J Comput Assist Radiol Surg 2021;
16:757-765. [PMID:
33719026 PMCID:
PMC8134291 DOI:
10.1007/s11548-021-02324-1]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/15/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE
Electromagnetic tracking (EMT) can partially replace X-ray guidance in minimally invasive procedures, reducing radiation in the OR. However, in this hybrid setting, EMT is disturbed by metallic distortion caused by the X-ray device. We plan to make hybrid navigation clinical reality to reduce radiation exposure for patients and surgeons, by compensating EMT error.
METHODS
Our online compensation strategy exploits cycle-consistent generative adversarial neural networks (CycleGAN). Positions are translated from various bedside environments to their bench equivalents, by adjusting their z-component. Domain-translated points are fine-tuned on the x-y plane to reduce error in the bench domain. We evaluate our compensation approach in a phantom experiment.
RESULTS
Since the domain-translation approach maps distorted points to their laboratory equivalents, predictions are consistent among different C-arm environments. Error is successfully reduced in all evaluation environments. Our qualitative phantom experiment demonstrates that our approach generalizes well to an unseen C-arm environment.
CONCLUSION
Adversarial, cycle-consistent training is an explicable, consistent and thus interpretable approach for online error compensation. Qualitative assessment of EMT error compensation gives a glimpse to the potential of our method for rotational error compensation.
Collapse