1
|
Aukema LMN, de Geer AF, van Alphen MJA, Schreuder WH, van Veen RLP, Ruers TJM, Siepel FJ, Karakullukcu MB. Hybrid registration of the fibula for electromagnetically navigated osteotomies in mandibular reconstructive surgery: a phantom study. Int J Comput Assist Radiol Surg 2025; 20:369-377. [PMID: 39585544 DOI: 10.1007/s11548-024-03282-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/02/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE In mandibular reconstructive surgery with free fibula flap, 3D-printed patient-specific cutting guides are the current state of the art. Although these guides enable accurate transfer of the virtual surgical plan to the operating room, disadvantages include long waiting times until surgery and the inability to change the virtual plan intraoperatively in case of tumor growth. Alternatively, (electromagnetic) surgical navigation combined with a non-patient-specific cutting guide could be used, requiring accurate image-to-patient registration. In this phantom study, we evaluated the accuracy of a hybrid registration method for the fibula and the additional error that is caused by navigating with a prototype of a novel non-patient-specific cutting guide to virtually planned osteotomy planes. METHODS The accuracy of hybrid registration and navigation was assessed in terms of target registration error (TRE), angular difference, and length difference of the intended fibula segments using three 3D-printed fibular phantoms with assessment points on osteotomy planes. Using electromagnetic tracking, hybrid registration was performed with point registration followed by surface registration on the lateral fibular surface. The fibula was fixated in the non-patient-specific cutting guide to navigate to planned osteotomy planes after which the accuracy was assessed. RESULTS Registration was achieved with a mean TRE, angular difference, and segment length difference of 2.3 ± 0.9 mm, 2.1 ± 1.4°, and 0.3 ± 0.3 mm respectively after hybrid registration. Navigation with the novel cutting guide increased the length difference (0.7 ± 0.6 mm), but decreased the angular difference (1.8 ± 1.3°). CONCLUSION Hybrid registration showed to be a feasible and noninvasive method to register the fibula in phantom setup and could be used for electromagnetically navigated osteotomies with a novel non-patient-specific cutting guide. Future studies should focus on testing this registration method in clinical setting.
Collapse
Affiliation(s)
- L M N Aukema
- Verwelius 3D Lab, Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - A F de Geer
- Verwelius 3D Lab, Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Robotics and Mechatronics, University of Twente, Enschede, The Netherlands.
| | - M J A van Alphen
- Verwelius 3D Lab, Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - W H Schreuder
- Verwelius 3D Lab, Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Amsterdam Medical University Center, Amsterdam, The Netherlands
| | - R L P van Veen
- Verwelius 3D Lab, Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - T J M Ruers
- Department of Surgery, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - F J Siepel
- Robotics and Mechatronics, University of Twente, Enschede, The Netherlands
| | - M B Karakullukcu
- Verwelius 3D Lab, Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Wilkat M, Saigo L, Kübler N, Rana M, Schrader F. Intraoral Scanning Enables Virtual-Splint-Based Non-Invasive Registration Protocol for Maxillofacial Surgical Navigation. J Clin Med 2024; 13:5196. [PMID: 39274408 PMCID: PMC11396243 DOI: 10.3390/jcm13175196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Background/Objectives: Surgical navigation has advanced maxillofacial surgery since the 1990s, bringing benefits for various indications. Traditional registration methods use fiducial markers that are either invasively bone-anchored or attached to a dental vacuum splint and offer high accuracy but necessitate additional imaging with increased radiation exposure. We propose a novel, non-invasive registration protocol using a CAD/CAM dental splint based on high-resolution intraoral scans. Methods: The effectiveness of this method was experimentally evaluated with an ex vivo 3D-printed skull measuring the target registration error (TRE). Surgical application is demonstrated in two clinical cases. Results: In the ex vivo model, the new CAD/CAM-splint-based method achieved a mean TRE across the whole facial skull of 0.97 ± 0.29 mm, which was comparable to traditional techniques like using bone-anchored screws (1.02 ± 0.23 mm) and dental vacuum splints (1.01 ± 0.33 mm), while dental anatomical landmarks showed a lower accuracy with a mean TRE of 1.84 ± 0.44 mm. Multifactorial ANOVA confirmed significant differences in TRE based on the registration method and the navigated level of the facial skull (p < 0.001). In clinical applications, the presented method demonstrated high accuracy for both midfacial and mandibular surgeries. Conclusions: Our results suggest that this non-invasive CAD/CAM-splint-based method is a viable alternative to traditional fiducial marker techniques, with the potential for broad application in maxillofacial surgery. This approach retains high accuracy while eliminating the need for supplementary imaging and reduces patient radiation exposure. Further clinical trials are necessary to confirm these findings and optimize splint design for enhanced navigational accuracy.
Collapse
Affiliation(s)
- Max Wilkat
- Department of Oral and Maxillofacial Surgery, Heinrich Heine University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Leonardo Saigo
- Department of Oral and Maxillofacial Surgery, National Dental Centre Singapore, 5 Second Hospital Ave., Singapore 168938, Singapore
| | - Norbert Kübler
- Department of Oral and Maxillofacial Surgery, Heinrich Heine University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Majeed Rana
- Department of Oral and Maxillofacial Surgery, Heinrich Heine University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Felix Schrader
- Department of Oral and Maxillofacial Surgery, Heinrich Heine University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Taleb A, Guigou C, Leclerc S, Lalande A, Bozorg Grayeli A. Image-to-Patient Registration in Computer-Assisted Surgery of Head and Neck: State-of-the-Art, Perspectives, and Challenges. J Clin Med 2023; 12:5398. [PMID: 37629441 PMCID: PMC10455300 DOI: 10.3390/jcm12165398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Today, image-guided systems play a significant role in improving the outcome of diagnostic and therapeutic interventions. They provide crucial anatomical information during the procedure to decrease the size and the extent of the approach, to reduce intraoperative complications, and to increase accuracy, repeatability, and safety. Image-to-patient registration is the first step in image-guided procedures. It establishes a correspondence between the patient's preoperative imaging and the intraoperative data. When it comes to the head-and-neck region, the presence of many sensitive structures such as the central nervous system or the neurosensory organs requires a millimetric precision. This review allows evaluating the characteristics and the performances of different registration methods in the head-and-neck region used in the operation room from the perspectives of accuracy, invasiveness, and processing times. Our work led to the conclusion that invasive marker-based methods are still considered as the gold standard of image-to-patient registration. The surface-based methods are recommended for faster procedures and applied on the surface tissues especially around the eyes. In the near future, computer vision technology is expected to enhance these systems by reducing human errors and cognitive load in the operating room.
Collapse
Affiliation(s)
- Ali Taleb
- Team IFTIM, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), Univ. Bourgogne Franche-Comté, 21000 Dijon, France; (C.G.); (S.L.); (A.L.); (A.B.G.)
| | - Caroline Guigou
- Team IFTIM, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), Univ. Bourgogne Franche-Comté, 21000 Dijon, France; (C.G.); (S.L.); (A.L.); (A.B.G.)
- Otolaryngology Department, University Hospital of Dijon, 21000 Dijon, France
| | - Sarah Leclerc
- Team IFTIM, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), Univ. Bourgogne Franche-Comté, 21000 Dijon, France; (C.G.); (S.L.); (A.L.); (A.B.G.)
| | - Alain Lalande
- Team IFTIM, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), Univ. Bourgogne Franche-Comté, 21000 Dijon, France; (C.G.); (S.L.); (A.L.); (A.B.G.)
- Medical Imaging Department, University Hospital of Dijon, 21000 Dijon, France
| | - Alexis Bozorg Grayeli
- Team IFTIM, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), Univ. Bourgogne Franche-Comté, 21000 Dijon, France; (C.G.); (S.L.); (A.L.); (A.B.G.)
- Otolaryngology Department, University Hospital of Dijon, 21000 Dijon, France
| |
Collapse
|
4
|
Celik HK, Koc S, Kustarci A, Caglayan N, Rennie AE. The state of additive manufacturing in dental research - A systematic scoping review of 2012-2022. Heliyon 2023; 9:e17462. [PMID: 37484349 PMCID: PMC10361388 DOI: 10.1016/j.heliyon.2023.e17462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Background/purpose Additive manufacturing (AM), also known as 3D printing, has the potential to transform the industry. While there have been advancements in using AM for dental restorations, there is still a need for further research to develop functional biomedical and dental materials. It's crucial to understand the current status of AM technology and research trends to advance dental research in this field. The aim of this study is to reveal the current status of international scientific publications in the field of dental research related to AM technologies. Materials and methods In this study, a systematic scoping review was conducted using appropriate keywords within the scope of international scientific publishing databases (PubMed and Web of Science). The review included related clinical and laboratory research, including both human and animal studies, case reports, review articles, and questionnaire studies. A total of 187 research studies were evaluated for quantitative synthesis in this review. Results The findings highlighted a rising trend in research numbers over the years (From 2012 to 2022). The most publications were produced in 2020 and 2021, with annual percentage increases of 25.7% and 26.2%, respectively. The majority of AM-related publications in dentistry research originate from Korea. The pioneer dental sub-fields with the ost publications in its category are prosthodontics and implantology, respectively. Conclusion The final review result clearly stated an expectation for the future that the research in dentistry would concentrate on AM technologies in order to increase the new product and process development in dental materials, tools, implants and new generation modelling strategy related to AM. The results of this work can be used as indicators of trends related to AM research in dentistry and/or as prospects for future publication expectations in this field.
Collapse
Affiliation(s)
- H. Kursat Celik
- Dept. of Agr. Machinery and Technology Engineering, Akdeniz University, Antalya, 07070, Turkey
| | - Simay Koc
- Dept. of Endodontics, Fac. of Dentistry, Akdeniz University, Antalya, Turkey
| | - Alper Kustarci
- Dept. of Endodontics, Fac. of Dentistry, Akdeniz University, Antalya, Turkey
| | - Nuri Caglayan
- Dept. of Mechatronics, Fac. of Engineering, Akdeniz University, Antalya, Turkey
| | | |
Collapse
|
5
|
de Geer AF, van Alphen MJA, Zuur CL, Loeve AJ, van Veen RLP, Karakullukcu MB. A hybrid registration method using the mandibular bone surface for electromagnetic navigation in mandibular surgery. Int J Comput Assist Radiol Surg 2022; 17:1343-1353. [PMID: 35441961 DOI: 10.1007/s11548-022-02610-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/10/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE To utilize navigated mandibular (reconstructive) surgery, accurate registration of the preoperative CT scan with the actual patient in the operating room (OR) is required. In this phantom study, the feasibility of a noninvasive hybrid registration method is assessed. This method consists of a point registration with anatomic landmarks for initialization and a surface registration using the bare mandibular bone surface for optimization. METHODS Three mandible phantoms with reference notches on two osteotomy planes were 3D printed. An electromagnetic tracking system in combination with 3D Slicer software was used for navigation. Different configurations, i.e., different surface point areas and number and configuration of surface points, were tested with a dentate phantom (A) in a metal-free environment. To simulate the intraoperative environment and different anatomies, the registration procedure was also performed with an OR bed using the dentate phantom and two (partially) edentulous phantoms with atypical anatomy (B and C). The accuracy of the registration was calculated using the notches on the osteotomy planes and was expressed as the target registration error (TRE). TRE values of less than 2.0 mm were considered as clinically acceptable. RESULTS In all experiments, the mean TRE was less than 2.0 mm. No differences were found using different surface point areas or number or configurations of surface points. Registration accuracy in the simulated intraoperative setting was-mean (SD)-0.96 (0.22), 0.93 (0.26), and 1.50 (0.28) mm for phantom A, phantom B, and phantom C. CONCLUSION Hybrid registration is a noninvasive method that requires only a small area of the bare mandibular bone surface to obtain high accuracy in phantom setting. Future studies should test this method in clinical setting during actual surgery.
Collapse
Affiliation(s)
- A F de Geer
- Verwelius 3D Lab, Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands.,Educational Program Technical Medicine, Leiden University Medical Center, Delft University of Technology, Erasmus University Medical Center, Leiden, Delft, Rotterdam, The Netherlands
| | - M J A van Alphen
- Verwelius 3D Lab, Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands.
| | - C L Zuur
- Verwelius 3D Lab, Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands.,Department of Otorhinolaryngology, Leiden University Medical Center, Leiden, The Netherlands
| | - A J Loeve
- Department of BioMechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - R L P van Veen
- Verwelius 3D Lab, Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - M B Karakullukcu
- Verwelius 3D Lab, Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| |
Collapse
|
6
|
de Geer A, Brouwer de Koning S, van Alphen M, van der Mierden S, Zuur C, van Leeuwen F, Loeve A, van Veen R, Karakullukcu M. Registration methods for surgical navigation of the mandible: a systematic review. Int J Oral Maxillofac Surg 2022; 51:1318-1329. [PMID: 35165005 DOI: 10.1016/j.ijom.2022.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/18/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022]
|
7
|
Brouwer de Koning SG, Geldof F, van Veen RLP, van Alphen MJA, Karssemakers LHE, Nijkamp J, Schreuder WH, Ruers TJM, Karakullukcu MB. Electromagnetic surgical navigation in patients undergoing mandibular surgery. Sci Rep 2021; 11:4657. [PMID: 33633247 PMCID: PMC7907338 DOI: 10.1038/s41598-021-84129-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
The purpose of this study was to evaluate the feasibility of electromagnetic (EM) navigation for guidance on osteotomies in patients undergoing oncologic mandibular surgery. Preoperatively, a 3D rendered model of the mandible was constructed from diagnostic computed tomography (CT) images. Cutting guides and patient specific reconstruction plates were designed and printed for intraoperative use. Intraoperative patient registration was performed using a cone beam CT scan (CBCT). The location of the mandible was tracked with an EM sensor fixated to the mandible. The real-time location of both the mandible and a pointer were displayed on the navigation system. Accuracy measurements were performed by pinpointing four anatomical landmarks and four landmarks on the cutting guide using the pointer on the patient and comparing these locations to the corresponding locations on the CBCT. Differences between actual and virtual locations were expressed as target registration error (TRE). The procedure was performed in eleven patients. TREs were 3.2 ± 1.1 mm and 2.6 ± 1.5 mm using anatomical landmarks and landmarks on the cutting guide, respectively. The navigation procedure added on average half an hour to the duration of the surgery. This is the first study that reports on the accuracy of EM navigation in patients undergoing mandibular surgery.
Collapse
Affiliation(s)
- S G Brouwer de Koning
- Department of Surgical Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - F Geldof
- Department of Surgical Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - R L P van Veen
- Department of Head and Neck Surgery & Oncology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands.,Department of Head and Neck Surgery & Oncology, Verwelius 3D Lab, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - M J A van Alphen
- Department of Head and Neck Surgery & Oncology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands.,Department of Head and Neck Surgery & Oncology, Verwelius 3D Lab, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - L H E Karssemakers
- Department of Head and Neck Surgery & Oncology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands.,Department of Head and Neck Surgery & Oncology, Verwelius 3D Lab, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - J Nijkamp
- Department of Surgical Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - W H Schreuder
- Department of Head and Neck Surgery & Oncology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands.,Department of Head and Neck Surgery & Oncology, Verwelius 3D Lab, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - T J M Ruers
- Department of Surgical Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - M B Karakullukcu
- Department of Head and Neck Surgery & Oncology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands.,Department of Head and Neck Surgery & Oncology, Verwelius 3D Lab, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| |
Collapse
|