1
|
King S, Vitale C, Grosswald R, Filicette T, Johnson J, Gokhale A, Berlet G, Safranski DL. Rescue of interfragmentary compression in screw stripping failures: The efficacy of NiTiNOL. J Foot Ankle Surg 2025:S1067-2516(25)00012-2. [PMID: 39864490 DOI: 10.1053/j.jfas.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/31/2024] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
Orthopedic screws are widely used to achieve bone reduction, compression, and construct stability. However, the relationship between insertion torque, interfragmentary compression, and fixation strength, especially when comparing standard screws with NiTiNOL/sustained dynamic compression (SDC), has not been thoroughly investigated. This study measured insertion torque, interfragmentary compression, and fixation strength for two types of headed orthopedic devices-standard and SDC-using solid foam bone replicates and cadaver validation. The study also assessed the interfragmentary compression produced by these devices in the context of simulated bone resorption. Results showed that compression force increased with insertion torque until thread stripping occurred, resulting in a 91.9 % loss of compression in the standard screw group. In contrast, the SDC device maintained significantly higher compression, even beyond the point of stripping. These findings suggest that SDC devices offer increased safety by continuing to apply interfragmentary compression after stripping. The SDC device's ability to generate internal compression allows it to re-engage threads into undamaged bone, potentially compensating for compression loss due to stripping. Clinically, these results indicate that surgeons might benefit from deliberately undershooting peak insertion torque, regardless of the device type, and may prefer NiTiNOL-based SDC devices for their resilience to stripping and bone resorption, ultimately optimizing patient outcomes in foot and ankle surgery.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David L Safranski
- Enovis Foot & Ankle, Atlanta, GA, USA; Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
2
|
Chan HHL, Nayak P, Alshaygy I, Gundle KR, Tsoi K, Daly MJ, Irish JC, Ferguson PC, Wunder JS. Does Freehand, Patient-specific Instrumentation or Surgical Navigation Perform Better for Allograft Reconstruction After Tumor Resection? A Preclinical Synthetic Bone Study. Clin Orthop Relat Res 2024; 482:1896-1908. [PMID: 38813958 PMCID: PMC11419413 DOI: 10.1097/corr.0000000000003116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 04/12/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Joint-sparing resection of periarticular bone tumors can be challenging because of complex geometry. Successful reconstruction of periarticular bone defects after tumor resection is often performed with structural allografts to allow for joint preservation. However, achieving a size-matched allograft to fill the defect can be challenging because allograft sizes vary, they do not always match a patient's anatomy, and cutting the allograft to perfectly fit the defect is demanding. QUESTIONS/PURPOSES (1) Is there a difference in mental workload among the freehand, patient-specific instrumentation, and surgical navigation approaches? (2) Is there a difference in conformance (quantitative measure of deviation from the ideal bone graft), elapsed time during reconstruction, and qualitative assessment of goodness-of-fit of the allograft reconstruction among the approaches? METHODS Seven surgeons used three modalities in the same order (freehand, patient-specific instrumentation, and surgical navigation) to fashion synthetic bone to reconstruct a standardized bone defect. National Aeronautics and Space Administration (NASA) mental task load index questionnaires and procedure time were captured. Cone-beam CT images of the shaped allografts were used to measure conformance (quantitative measure of deviation from the ideal bone graft) to a computer-generated ideal bone graft model. Six additional (senior) surgeons blinded to modality scored the quality of fit of the allografts into the standardized tumor defect using a 10-point Likert scale. We measured conformance using the root-mean-square metric in mm and used ANOVA for multipaired comparisons (p < 0.05 was significant). RESULTS There was no difference in mental NASA total task load scores among the freehand, patient-specific instrumentation, and surgical navigation techniques. We found no difference in conformance root-mean-square values (mean ± SD) between surgical navigation (2 ± 0 mm; mean values have been rounded to whole numbers) and patient-specific instrumentation (2 ± 1 mm), but both showed a small improvement compared with the freehand approach (3 ± 1 mm). For freehand versus surgical navigation, the mean difference was 1 mm (95% confidence interval [CI] 0.5 to 1.1; p = 0.01). For freehand versus patient-specific instrumentation, the mean difference was 1 mm (95% CI -0.1 to 0.9; p = 0.02). For patient-specific instrumentation versus surgical navigation, the mean difference was 0 mm (95% CI -0.5 to 0.2; p = 0.82). In evaluating the goodness of fit of the shaped grafts, we found no clinically important difference between surgical navigation (median [IQR] 7 [6 to 8]) and patient-specific instrumentation (median 6 [5 to 7.8]), although both techniques had higher scores than the freehand technique did (median 3 [2 to 4]). For freehand versus surgical navigation, the difference of medians was 4 (p < 0.001). For freehand versus patient-specific instrumentation, the difference of medians was 3 (p < 0.001). For patient-specific instrumentation versus surgical navigation, the difference of medians was 1 (p = 0.03). The mean ± procedural times for freehand was 16 ± 10 minutes, patient-specific instrumentation was 14 ± 9 minutes, and surgical navigation techniques was 24 ± 8 minutes. We found no differences in procedure times across three shaping modalities (freehand versus patient-specific instrumentation: mean difference 2 minutes [95% CI 0 to 7]; p = 0.92; freehand versus surgical navigation: mean difference 8 minutes [95% CI 0 to 20]; p = 0.23; patient-specific instrumentation versus surgical navigation: mean difference 10 minutes [95% CI 1 to 19]; p = 0.12). CONCLUSION Based on surgical simulation to reconstruct a standardized periarticular bone defect after tumor resection, we found a possible small advantage to surgical navigation over patient-specific instrumentation based on qualitative fit, but both techniques provided slightly better conformance of the shaped graft for fit into the standardized post-tumor resection bone defect than the freehand technique did. To determine whether these differences are clinically meaningful requires further study. The surgical navigation system presented here is a product of laboratory research development, and although not ready to be widely deployed for clinical practice, it is currently being used in a research operating room setting for patient care. This new technology is associated with a learning curve, capital costs, and potential risk. The reported preliminary results are based on a preclinical synthetic bone tumor study, which is not as realistic as actual surgical scenarios. CLINICAL RELEVANCE Surgical navigation systems are an emerging technology in orthopaedic and reconstruction surgery, and understanding their capabilities and limitations is paramount for clinical practice. Given our preliminary findings in a small cohort study with one scenario of standardized synthetic periarticular bone tumor defects, future investigations should include different surgical scenarios using allograft and cadaveric specimens in a more realistic surgical setting.
Collapse
Affiliation(s)
- Harley H. L. Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- TECHNA Institute, Guided Therapeutics (GTx) Program, University Health Network, Toronto, Ontario, Canada
| | - Prakash Nayak
- Department of Surgical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Parel, Mumbai, India
| | - Ibrahim Alshaygy
- Department of Orthopaedics, College of Medicine, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Kenneth R. Gundle
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University, Portland, OR, USA
| | - Kim Tsoi
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- University of Toronto Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Surgical Oncology, University Health Network, Toronto, Ontario, Canada
| | - Michael J. Daly
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- TECHNA Institute, Guided Therapeutics (GTx) Program, University Health Network, Toronto, Ontario, Canada
| | - Jonathan C. Irish
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- TECHNA Institute, Guided Therapeutics (GTx) Program, University Health Network, Toronto, Ontario, Canada
- Department of Surgical Oncology, University Health Network, Toronto, Ontario, Canada
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Peter C. Ferguson
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- University of Toronto Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Surgical Oncology, University Health Network, Toronto, Ontario, Canada
| | - Jay S. Wunder
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- University of Toronto Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Surgical Oncology, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Wang C, Huang S, Yu Y, Liang H, Wang R, Tang X, Ji T. Fluoroscopically calibrated 3D-printed patient-specific instruments improve the accuracy of osteotomy during bone tumor resection adjacent to joints. 3D Print Med 2024; 10:15. [PMID: 38656431 PMCID: PMC11041006 DOI: 10.1186/s41205-024-00216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Inadequate surface matching, variation in the guide design, and soft tissue on the skeletal surface may make it difficult to accurately place the 3D-printed patient-specific instrument (PSI) exactly to the designated site, leading to decreased accuracy, or even errors. Consequently, we developed a novel 3D-printed PSI with fluoroscopy-guided positioning markers to enhance the accuracy of osteotomies in joint-preserving surgery. The current study was to compare whether the fluoroscopically calibrated PSI (FCPSI) can achieve better accuracy compared with freehand resection and conventional PSI (CPSI) resection. METHODS Simulated joint-preserving surgery was conducted using nine synthetic left knee bone models. Osteotomies adjacent to the knee joint were designed to evaluate the accuracy at the epiphysis side. The experiment was divided into three groups: free-hand, conventional PSI (CPSI), and fluoroscopically Calibrated PSI (FCPSI). Post-resection CT scans were quantitatively analyzed. Analysis of variance (ANOVA) was used. RESULT FCPSI improved the resection accuracy significantly. The mean location accuracy is 2.66 mm for FCPSI compared to 6.36 mm (P < 0.001) for freehand resection and 4.58 mm (P = 0.012) for CPSI. The mean average distance is 1.27 mm compared to 2.99 mm (p < 0.001) and 2.11 mm (p = 0.049). The mean absolute angle is 2.16° compared to 8.50° (p < 0.001) and 5.54° (p = 0.021). The mean depth angle is 1.41° compared to 8.10° (p < 0.001) and 5.32° (p = 0.012). However, there were no significant differences in the front angle compared to the freehand resection group (P = 0.055) and CPSI (P = 0.599) group. The location accuracy observed with FCPSI was maintained at 4 mm, while CPSI and freehand resection exhibited a maximum deviation of 8 mm. CONCLUSION The fluoroscopically calibrated 3D-printed patient-specific instruments improve the accuracy of osteotomy during bone tumor resection adjacent to joint joints compared to conventional PSI and freehand resection. In conclusion, this novel 3D-printed PSI offers significant accuracy improvement in joint preserving surgery with a minimal increase in time and design costs.
Collapse
Affiliation(s)
- Chen Wang
- Peking University People's Hospital, Musculoskeletal Tumor Center, Beijing, China
| | - Siyi Huang
- Peking University People's Hospital, Musculoskeletal Tumor Center, Beijing, China
| | - Yue Yu
- LDK Medical Co., Ltd., R&D, Beijing, China
| | - Haijie Liang
- Peking University People's Hospital, Musculoskeletal Tumor Center, Beijing, China
| | - Ruifeng Wang
- Peking University People's Hospital, Musculoskeletal Tumor Center, Beijing, China
| | - Xiaodong Tang
- Peking University People's Hospital, Musculoskeletal Tumor Center, Beijing, China
| | - Tao Ji
- Peking University People's Hospital, Musculoskeletal Tumor Center, Beijing, China.
| |
Collapse
|
4
|
Ke S, Zhang B, He Y, Zhou Y, Hu X, Fan Y, Wang M, Zhang Y, Wang C. Reconstruction Strategy for Upper Extremity Defects After Bone Tumor Resection Based on 3D Customized Bone Cement Mold. Surg Innov 2024:15533506241244493. [PMID: 38606504 DOI: 10.1177/15533506241244493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
BACKGROUND Reconstructing bone defects in the upper extremities and restoring their functions poses a significant challenge. In this study, we describe a novel workflow for designing and manufacturing customized bone cement molds using 3D printing technology to reconstruct upper extremity defects after bone tumor resection. METHODS Computer tomography data was acquired from the unaffected upper extremities to create a detachable mold, which can be customized to fit the joint precisely by shaping the bone cement accordingly. Fourteen patients who underwent reconstructive surgery following bone tumor resection in the proximal humerus (13 cases) or distal radius (1 case) between January 2014 and December 2022 were retrospectively evaluated. The medical records of this case series were reviewed for the demographic, radiological, and operative data. Metastasis, local recurrence, and complication were also reviewed. Additionally, Musculoskeletal Tumor Society Score (MSTS) and Visual Analogue Scale (VAS) were used to assess clinical outcomes. RESULTS The mean follow-up period was 49.36 ± 15.18 months (range, 27-82 months). At the end of follow-up, there were no cases of metastasis or recurrence, and patients did not experience complications such as infection, dislocation, or implant loosening. Two cases complicated with subluxation (14.3%), and 1 case underwent revision surgery for prosthetic fracture (7.1%). The average MSTS score was 23.2 ± 1.76 (77.4%, range, 66.7%-86.7%), and the postoperative VAS score was 1.86 ± 1.03 (range, 1-4), which was significantly lower than that before surgery (average preoperative VAS score was 5.21 ± 2.00 (range, 2-8)) (P < .001). CONCLUSION Customized 3D molds can be utilized to shape bone cement prostheses, which may serve as a potential alternative for reconstructing the proximal humerus and distal radius following en bloc resection of bone tumors. This reconstruction strategy offers apparent advantages, including precise matching of articular surfaces and comparatively reduced costs.
Collapse
Affiliation(s)
- Song Ke
- Department of Orthopeadic, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bokai Zhang
- Department of Orthopeadic, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yongqin He
- Department of Orthopeadic, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuanyuan Zhou
- Department of Orthopeadic, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xu Hu
- Department of Orthopeadic, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Min Wang
- Department of Orthopeadic, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuan Zhang
- Department of Orthopeadic, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chao Wang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| |
Collapse
|
5
|
Lin Z, Lei C, Yang L. Modern Image-Guided Surgery: A Narrative Review of Medical Image Processing and Visualization. SENSORS (BASEL, SWITZERLAND) 2023; 23:9872. [PMID: 38139718 PMCID: PMC10748263 DOI: 10.3390/s23249872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/15/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Medical image analysis forms the basis of image-guided surgery (IGS) and many of its fundamental tasks. Driven by the growing number of medical imaging modalities, the research community of medical imaging has developed methods and achieved functionality breakthroughs. However, with the overwhelming pool of information in the literature, it has become increasingly challenging for researchers to extract context-relevant information for specific applications, especially when many widely used methods exist in a variety of versions optimized for their respective application domains. By being further equipped with sophisticated three-dimensional (3D) medical image visualization and digital reality technology, medical experts could enhance their performance capabilities in IGS by multiple folds. The goal of this narrative review is to organize the key components of IGS in the aspects of medical image processing and visualization with a new perspective and insights. The literature search was conducted using mainstream academic search engines with a combination of keywords relevant to the field up until mid-2022. This survey systemically summarizes the basic, mainstream, and state-of-the-art medical image processing methods as well as how visualization technology like augmented/mixed/virtual reality (AR/MR/VR) are enhancing performance in IGS. Further, we hope that this survey will shed some light on the future of IGS in the face of challenges and opportunities for the research directions of medical image processing and visualization.
Collapse
Affiliation(s)
- Zhefan Lin
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310030, China;
- ZJU-UIUC Institute, International Campus, Zhejiang University, Haining 314400, China;
| | - Chen Lei
- ZJU-UIUC Institute, International Campus, Zhejiang University, Haining 314400, China;
| | - Liangjing Yang
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310030, China;
- ZJU-UIUC Institute, International Campus, Zhejiang University, Haining 314400, China;
| |
Collapse
|
6
|
Fan X, Zhu Q, Tu P, Joskowicz L, Chen X. A review of advances in image-guided orthopedic surgery. Phys Med Biol 2023; 68. [PMID: 36595258 DOI: 10.1088/1361-6560/acaae9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Orthopedic surgery remains technically demanding due to the complex anatomical structures and cumbersome surgical procedures. The introduction of image-guided orthopedic surgery (IGOS) has significantly decreased the surgical risk and improved the operation results. This review focuses on the application of recent advances in artificial intelligence (AI), deep learning (DL), augmented reality (AR) and robotics in image-guided spine surgery, joint arthroplasty, fracture reduction and bone tumor resection. For the pre-operative stage, key technologies of AI and DL based medical image segmentation, 3D visualization and surgical planning procedures are systematically reviewed. For the intra-operative stage, the development of novel image registration, surgical tool calibration and real-time navigation are reviewed. Furthermore, the combination of the surgical navigation system with AR and robotic technology is also discussed. Finally, the current issues and prospects of the IGOS system are discussed, with the goal of establishing a reference and providing guidance for surgeons, engineers, and researchers involved in the research and development of this area.
Collapse
Affiliation(s)
- Xingqi Fan
- Institute of Biomedical Manufacturing and Life Quality Engineering, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Qiyang Zhu
- Institute of Biomedical Manufacturing and Life Quality Engineering, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Puxun Tu
- Institute of Biomedical Manufacturing and Life Quality Engineering, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Leo Joskowicz
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Xiaojun Chen
- Institute of Biomedical Manufacturing and Life Quality Engineering, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Hill D, Williamson T, Lai CY, Leary M, Brandt M, Choong P. Automated elaborate resection planning for bone tumor surgery. Int J Comput Assist Radiol Surg 2023; 18:553-564. [PMID: 36319922 PMCID: PMC9939503 DOI: 10.1007/s11548-022-02763-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE Planning for bone tumor resection surgery is a technically demanding and time-consuming task, reliant on manual positioning of planar cuts in a virtual space. More elaborate cutting approaches may be possible through the use of surgical robots or patient-specific instruments; however, methods for preparing such a resection plan must be developed. METHODS This work describes an automated approach for generating conformal bone tumor resection plans, where the resection geometry is defined by the convex hull of the tumor, and a focal point. The resection geometry is optimized using particle swarm, where the volume of healthy bone collaterally resected with the tumor is minimized. The approach was compared to manually prepared planar resection plans from an experienced surgeon for 20 tumor cases. RESULTS It was found that algorithm-generated hull-type resections greatly reduced the volume of collaterally resected healthy bone. The hull-type resections resulted in statistically significant improvements compared to the manual approach (paired t test, p < 0.001). CONCLUSIONS The described approach has potential to improve patient outcomes by reducing the volume of healthy bone collaterally resected with the tumor and preserving nearby critical anatomy.
Collapse
Affiliation(s)
- Dave Hill
- Centre for Additive Manufacturing, School of Engineering, RMIT University, 58 Cardigan St, Carlton, 3001, Australia
| | - Tom Williamson
- Centre for Additive Manufacturing, School of Engineering, RMIT University, 58 Cardigan St, Carlton, 3001, Australia.
| | - Chow Yin Lai
- Department of Electronic and Electrical Engineering, University College London, Malet Place and Torrington Place, Roberts Building, Level 7, London, WC1E 7JE, UK
| | - Martin Leary
- Centre for Additive Manufacturing, School of Engineering, RMIT University, 58 Cardigan St, Carlton, 3001, Australia
| | - Milan Brandt
- Centre for Additive Manufacturing, School of Engineering, RMIT University, 58 Cardigan St, Carlton, 3001, Australia
| | - Peter Choong
- Department of Surgery, University of Melbourne, Level 2, Clinical Sciences Building, 29 Regent Street, Fitzroy, 3065, Australia
| |
Collapse
|
8
|
Hrouda A, Capek L, Hradil J, Horak Z. Biomechanics optimisation of the laminoplasty groove size and position: A numerical study. J Clin Neurosci 2022; 105:45-50. [PMID: 36084565 DOI: 10.1016/j.jocn.2022.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND This study is focused on the opening technique of the cervical vertebrae during laminoplasty which serves to substantially reduce the most severe adverse effects of the simple resection of posterior vertebral elements. This computational study aims to clarify by an optimisation approach what shape and position upon the lamina the groove should have. METHODS The computational model was developed in the computational software COMSOL Multiphysics 5.6a based on a computer tomography data obtained from the C4 vertebra. For finding the optimal minimum or maximum of a function (surface), optimisation algorithms are developed following the Nelder-Mead algorithm. RESULTS The reaction-opening force increases with a decreasing groove radius and an increasing position from the vertebra body. The created area increases with a decreasing groove radius and a decreasing position. As the opening happens mostly only above the groove, the opening area increases only in this location. Moreover, the von Mises stress peak value is almost twice as large as in the case of maximization of the opening area, which might result in breaking of the lamina as the thickness of the lamina would be reduced to its minimum. CONCLUSION The groove radius and position can affect the opening force and the opening area in case of double door laminoplasty. The opening force is highly influenced by the groove position and radius. The best position for placing the groove is in the middle of the lamina and the radius of the groove should be as large as possible.
Collapse
Affiliation(s)
- Ales Hrouda
- KU Leuven, Department of Mechanical Engineering, Belgium; Technical University of Liberec, Studentska 2, 46117 Liberec, Czech, Czech Republic
| | - Lukas Capek
- Regional Hospital in Liberec, Husova 10, 46001 Liberec, Czech Republic; Technical University of Liberec, Studentska 2, 46117 Liberec, Czech, Czech Republic.
| | - Jan Hradil
- Regional Hospital in Liberec, Husova 10, 46001 Liberec, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Ruska 2411/87, 100 00 Praha 10 Vinohrady, Czech Republic
| | - Zdenek Horak
- Third Faculty of Medicine, Charles University, Prague, Ruska 2411/87, 100 00 Praha 10 Vinohrady, Czech Republic; Colleague of Polytechnics Jihlava, Tolsteho 1556, 58601 Jihlava, Czech Republic
| |
Collapse
|
9
|
Jamshidi K, Mirzaei A, Bagherifard A, Jahansouz A, Mohaghegh MR. Does the adherence of distal femur parosteal osteosarcoma to the neurovascular bundle increase the rate of local recurrences? Orthop Traumatol Surg Res 2022; 108:103220. [PMID: 35093566 DOI: 10.1016/j.otsr.2022.103220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/16/2021] [Accepted: 07/09/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Proximity of tumor to the neurovascular bundle (NVB) makes achieving a wide margin difficult. In low-grade parosteal osteosarcoma (POS), it is not clear whether adherence of tumor to NVB increases the rate of local recurrence (LR). In this study, we evaluated whether tumor adherence to the NVB increases the risk of LR in low-grade POS of the distal femur? HYPOTHESIS We hypothesized that if the thin neurovascular barrier (the adventitia of the vessels and the epineurium of the nerve) prevents tumor penetration, the rate of LR should be comparable between the lesions with and without a continuous layer of healthy fatty tissue between the tumor and NVB. MATERIALS AND METHODS In a retrospective survey, 30 patients with low-grade POS of the posterior aspect of the distal femur were evaluated for the proximity of mass to NVB. Based on the proximal to distal T1 axial MRI sections, the tumors were divided into two groups including the tumors with an uninterrupted (group A) and interrupted (group B) rim of fatty tissue between the mass and NVB. The rate of LR was compared between the two study groups. The concordance of MRI in detecting NVB adherence was checked with pathology specimen. RESULTS Using MRI, we identified 16 cases in group A and 14 cases in group B. The MRI status of fatty rim was concordant with pathology specimen in 96.4% of cases. The mean follow-up period of the two groups was not statistically different (117±27.6 vs. 105.8±29.4 months, respectively, p=0.29). The other baseline characteristics of the two groups were statistically comparable, as well. The rate of LR was 12.5% (2 out of 16 patients) in group A and 14.3% (2 out of 14 patients) in group B (95% CI: 0.142-9.586, p=0.87). The 10-year recurrence-free survival was 87.5% for group A and 85.7% for group B (p=0.9). DISCUSSION The absence of a continuous rim of fatty tissue between the tumor and NVB in MRI does not increase the risk of LR in low-grade POS of the distal femur. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Khodamorad Jamshidi
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Mirzaei
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Bagherifard
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Jahansouz
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Mohaghegh
- Anesthesiology and Critical Care Department, Hasheminejad Kidney Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Projected cutting guides using an augmented reality system to improve surgical margins in maxillectomies: A preclinical study. Oral Oncol 2022; 127:105775. [DOI: 10.1016/j.oraloncology.2022.105775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 11/21/2022]
|
11
|
Sahovaler A, Daly MJ, Chan HHL, Nayak P, Tzelnick S, Arkhangorodsky M, Qiu J, Weersink R, Irish JC, Ferguson P, Wunder JS. Automatic Registration and Error Color Maps to Improve Accuracy for Navigated Bone Tumor Surgery Using Intraoperative Cone-Beam CT. JB JS Open Access 2022; 7:JBJSOA-D-21-00140. [PMID: 35540727 PMCID: PMC9071254 DOI: 10.2106/jbjs.oa.21.00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Computer-assisted surgery (CAS) can improve surgical precision in orthopaedic oncology. Accurate alignment of the patient’s imaging coordinates with the anatomy, known as registration, is one of the most challenging aspects of CAS and can be associated with substantial error. Using intraoperative, on-the-table, cone-beam computed tomography (CBCT), we performed a pilot clinical study to validate a method for automatic intraoperative registration.
Collapse
Affiliation(s)
- Axel Sahovaler
- Guided Therapeutics (GTx) Program, TECHNA Institute, University Health Network, Toronto, Ontario, Canada
- Head & Neck Surgery Unit, University College London Hospitals, London, United Kingdom
| | - Michael J Daly
- Guided Therapeutics (GTx) Program, TECHNA Institute, University Health Network, Toronto, Ontario, Canada
| | - Harley H L Chan
- Guided Therapeutics (GTx) Program, TECHNA Institute, University Health Network, Toronto, Ontario, Canada
| | - Prakash Nayak
- Guided Therapeutics (GTx) Program, TECHNA Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgical Oncology, Bone and Soft Tissue Disease Management Group, Tata Memorial Centre, Mumbai, India
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- University of Toronto Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Sharon Tzelnick
- Guided Therapeutics (GTx) Program, TECHNA Institute, University Health Network, Toronto, Ontario, Canada
| | - Michelle Arkhangorodsky
- Guided Therapeutics (GTx) Program, TECHNA Institute, University Health Network, Toronto, Ontario, Canada
| | - Jimmy Qiu
- Guided Therapeutics (GTx) Program, TECHNA Institute, University Health Network, Toronto, Ontario, Canada
| | - Robert Weersink
- Guided Therapeutics (GTx) Program, TECHNA Institute, University Health Network, Toronto, Ontario, Canada
| | - Jonathan C Irish
- Guided Therapeutics (GTx) Program, TECHNA Institute, University Health Network, Toronto, Ontario, Canada
| | - Peter Ferguson
- Guided Therapeutics (GTx) Program, TECHNA Institute, University Health Network, Toronto, Ontario, Canada
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- University of Toronto Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jay S Wunder
- Guided Therapeutics (GTx) Program, TECHNA Institute, University Health Network, Toronto, Ontario, Canada
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- University of Toronto Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Wilkat M, Kübler N, Rana M. Advances in the Resection and Reconstruction of Midfacial Tumors Through Computer Assisted Surgery. Front Oncol 2021; 11:719528. [PMID: 34737947 PMCID: PMC8560787 DOI: 10.3389/fonc.2021.719528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/27/2021] [Indexed: 11/14/2022] Open
Abstract
Curatively intended oncologic surgery is based on a residual-free tumor excision. Since decades, the surgeon’s goal of R0-resection has led to radical resections in the anatomical region of the midface because of the three-dimensionally complex anatomy where aesthetically and functionally crucial structures are in close relation. In some cases, this implied aggressive overtreatment with loss of the eye globe. In contrast, undertreatment followed by repeated re-resections can also not be an option. Therefore, the evaluation of the true three-dimensional tumor extent and the intraoperative availability of this information seem critical for a precise, yet substance-sparing tumor removal. Computer assisted surgery (CAS) can provide the framework in this context. The present study evaluated the beneficial use of CAS in the treatment of midfacial tumors with special regard to tumor resection and reconstruction. Therefore, 60 patients diagnosed with a malignancy of the upper jaw has been treated, 31 with the use of CAS and 29 conventionally. Comparison of the two groups showed a higher rate of residual-free resections in cases of CAS application. Furthermore, we demonstrate the use of navigated specimen taking called tumor mapping. This procedure enables the transparent, yet precise documentation of three-dimensional tumor borders which paves the way to a more feasible interdisciplinary exchange leading e.g. to a much more focused radiation therapy. Moreover, we evaluated the possibilities of primary midface reconstructions seizing CAS, especially in cases of infiltrated orbital floors. These cases needed reduction of intra-orbital volume due to the tissue loss after resection which could be precisely achieved by CAS. These benefits of CAS in midface reconstruction found expression in positive changes in quality of life. The present work was able to demonstrate that the area of oncological surgery of the midface is a prime example of interface optimization based on the sensible use of computer assistance. The fact that the system makes the patient transparent for the surgeon and the procedure controllable facilitates a more precise and safer treatment oriented to a better outcome.
Collapse
Affiliation(s)
- Max Wilkat
- Department for Oral & Maxillofacial Surgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Norbert Kübler
- Department for Oral & Maxillofacial Surgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Majeed Rana
- Department for Oral & Maxillofacial Surgery, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
13
|
Automated resection planning for bone tumor surgery. Comput Biol Med 2021; 137:104777. [PMID: 34492517 DOI: 10.1016/j.compbiomed.2021.104777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/27/2022]
Abstract
Planning for bone tumor resection surgery is a technically demanding and time-consuming task, reliant on manual positioning of cutting planes (CPs). This work describes an automated approach for generating bone tumor resection plans, where the volume of healthy bone collaterally resected with the tumor is minimized through optimized placement of CPs. Particle swarm optimization calculates the optimal position and orientation of the CPs by introducing a single new CP to an existing resection, then optimizing all CPs to find the global minima. The bone bounded by all CPs is collaterally resected with the tumor. The approach was compared to manual resection plans from an experienced surgeon for 20 tumor cases. It was found that a greater number of CPs reduce the collaterally resected healthy bone, with diminishing returns on this improvement after five CPs. The algorithm-generated resection plan with equivalent number of CPs resulted in a statistically significant improvement over manual plans (paired t-test, p < 0.001). The described approach has potential to improve patient outcomes by reducing loss of healthy bone in tumor surgery while offering a surgeon multiple resection plan options.
Collapse
|