1
|
Pisano G, Wendler T, Valdés Olmos RA, Garganese G, Rietbergen DDD, Giammarile F, Vidal-Sicart S, Oonk MHM, Frumovitz M, Abu-Rustum NR, Scambia G, Rufini V, Collarino A. Molecular image-guided surgery in gynaecological cancer: where do we stand? Eur J Nucl Med Mol Imaging 2024; 51:3026-3039. [PMID: 38233609 PMCID: PMC11300493 DOI: 10.1007/s00259-024-06604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024]
Abstract
PURPOSE The aim of this review is to give an overview of the current status of molecular image-guided surgery in gynaecological malignancies, from both clinical and technological points of view. METHODS A narrative approach was taken to describe the relevant literature, focusing on clinical applications of molecular image-guided surgery in gynaecology, preoperative imaging as surgical roadmap, and intraoperative devices. RESULTS The most common clinical application in gynaecology is sentinel node biopsy (SNB). Other promising approaches are receptor-target modalities and occult lesion localisation. Preoperative SPECT/CT and PET/CT permit a roadmap for adequate surgical planning. Intraoperative detection modalities span from 1D probes to 2D portable cameras and 3D freehand imaging. CONCLUSION After successful application of radio-guided SNB and SPECT, innovation is leaning towards hybrid modalities, such as hybrid tracer and fusion of imaging approaches including SPECT/CT and PET/CT. Robotic surgery, as well as augmented reality and virtual reality techniques, is leading to application of these innovative technologies to the clinical setting, guiding surgeons towards a precise, personalised, and minimally invasive approach.
Collapse
Affiliation(s)
- Giusi Pisano
- Section of Nuclear Medicine, University Department of Radiological Sciences and Haematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Thomas Wendler
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
- Chair for Computer-Aided Medical Procedures and Augmented Reality, Technical University of Munich, Garching, Near Munich, Germany
| | - Renato A Valdés Olmos
- Interventional Molecular Imaging Laboratory & Section Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Giorgia Garganese
- Gynecologic Oncology Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Section of Obstetrics and Gynecology, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Daphne D D Rietbergen
- Interventional Molecular Imaging Laboratory & Section Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Francesco Giammarile
- Nuclear Medicine and Diagnostic Imaging Section, Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| | - Sergi Vidal-Sicart
- Nuclear Medicine Department, Hospital Clinic Barcelona, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain
| | - Maaike H M Oonk
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Michael Frumovitz
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nadeem R Abu-Rustum
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giovanni Scambia
- Gynecologic Oncology Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Section of Obstetrics and Gynecology, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vittoria Rufini
- Section of Nuclear Medicine, University Department of Radiological Sciences and Haematology, Università Cattolica del Sacro Cuore, Rome, Italy
- Nuclear Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Angela Collarino
- Nuclear Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
2
|
Michalik B, Engels S, Otterbach MC, Frerichs J, Suhrhoff PE, van Oosterom MN, Maurer MH, Wawroschek F, Winter A. A new bimodal approach for sentinel lymph node imaging in prostate cancer using a magnetic and fluorescent hybrid tracer. Eur J Nucl Med Mol Imaging 2024; 51:2922-2928. [PMID: 37999812 PMCID: PMC11300469 DOI: 10.1007/s00259-023-06522-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE To obtain initial data on sentinel lymph node (SLN) visualisation by pre-operative magnetic resonance imaging (MRI) and intra-operative bimodal SLN identification using a new magnetic fluorescent hybrid tracer in prostate cancer (PCa) patients. METHODS Ten patients at > 5% risk for lymph node (LN) invasion were included. The day before surgery, a magnetic fluorescent hybrid tracer consisting of superparamagnetic iron oxide nanoparticles (SPION) and indocyanine green was transrectally injected into the prostate. Five hours after injection, transversal pelvic MRI scans were recorded and T2*-weighed images were screened for pelvic LNs with SPION uptake. Intra-operatively, magnetically active and/or fluorescent SLNs were detected by a handheld magnetometer and near-infrared fluorescence imaging (FI). Extended pelvic lymph node dissection (PLND) and radical prostatectomy completed the surgery. All resected specimens were checked ex situ for magnetic activity and fluorescence and were histopathologically examined. RESULTS Pre-operative MRI identified 145 pelvic LNs with SPION uptake. In total, 75 (median 6, range 3‒13) magnetically active SLNs were resected, including 14 SLNs not seen on MRI. FI identified 89 fluorescent LNs (median 8.5, range 4‒13) of which 15 LNs were not magnetically active. Concordance of the different techniques was 70% for pre-operative MRI vs. magnetometer-guided PLND and 88% for magnetic vs. fluorescent SLN detection. CONCLUSION These are the first promising results of bimodal, magnetic fluorescent SLN detection in PCa patients. Our magnetic fluorescent hybrid approach provides the surgeon a pre-operative lymphatic roadmap by using MRI and intra-operative visual guidance through the application of a fluorescent lymphatic agent. The diagnostic accuracy of our new hybrid approach has to be evaluated in further studies. TRIAL REGISTRATION DRKS00032808. Registered 04 October 2023, retrospectively registered.
Collapse
Affiliation(s)
- Bianca Michalik
- University Hospital for Urology, Klinikum Oldenburg, Department of Human Medicine, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Svenja Engels
- University Hospital for Urology, Klinikum Oldenburg, Department of Human Medicine, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Maximilian C Otterbach
- University Institute for Diagnostic and Interventional Radiology, Klinikum Oldenburg, Department of Human Medicine, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Jorina Frerichs
- University Hospital for Urology, Klinikum Oldenburg, Department of Human Medicine, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Paula E Suhrhoff
- University Hospital for Urology, Klinikum Oldenburg, Department of Human Medicine, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Matthias N van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin H Maurer
- University Institute for Diagnostic and Interventional Radiology, Klinikum Oldenburg, Department of Human Medicine, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Friedhelm Wawroschek
- University Hospital for Urology, Klinikum Oldenburg, Department of Human Medicine, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Alexander Winter
- University Hospital for Urology, Klinikum Oldenburg, Department of Human Medicine, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, Oldenburg, Germany.
| |
Collapse
|
3
|
van Leeuwen FWB, Buckle T, Rietbergen DDD, van Oosterom MN. The realization of medical devices for precision surgery - development and implementation of ' stop-and-go' imaging technologies. Expert Rev Med Devices 2024; 21:349-358. [PMID: 38722051 DOI: 10.1080/17434440.2024.2341102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/05/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION Surgery and biomedical imaging encompass a big share of the medical-device market. The ever-mounting demand for precision surgery has driven the integration of these two into the field of image-guided surgery. A key-question herein is how imaging modalities can guide the surgical decision-making process. Through performance-based design, chemists, engineers, and doctors need to build a bridge between imaging technologies and surgical challenges. AREAS-COVERED This perspective article highlights the complementary nature between the technological design of an image-guidance modality and the type of procedure performed. The specific roles of the involved professionals, imaging technologies, and surgical indications are addressed. EXPERT-OPINION Molecular-image-guided surgery has the potential to advance pre-, intra- and post-operative tissue characterization. To achieve this, surgeons need the access to well-designed indication-specific chemical-agents and detection modalities. Hereby, some technologies stimulate exploration ('go'), while others stimulate caution ('stop'). However, failing to adequately address the indication-specific needs rises the risk of incorrect tool employment and sub-optimal surgical performance. Therefore, besides the availability of new technologies, market growth is highly dependent on the practical nature and impact on real-life clinical care. While urology currently takes the lead in the widespread implementation of image-guidance technologies, the topic is generic and its popularity spreads rapidly within surgical oncology.
Collapse
Affiliation(s)
- Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daphne D D Rietbergen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias N van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Nguyen KT, Bui MP, Le TA, Kim SJ, Kim HY, Yoon J, Park JO, Kim J. Magnetic particle image scanner based on asymmetric core-filled electromagnetic actuator. Comput Biol Med 2024; 169:107864. [PMID: 38171260 DOI: 10.1016/j.compbiomed.2023.107864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
Monitoring the distribution of magnetic nanoparticles (MNPs) in the vascular system is an important task for the advancement of precision therapeutics and drug delivery. Despite active targeting using active motilities, it is required to visualize the position and concentration of carriers that reach the target, to promote the development of this technology. In this work, a feasibility study is presented on a tomographic scanner that allows monitoring of the injected carriers quantitatively in a relatively short interval. The device is based on a small-animal-scale asymmetric magnetic platform integrated with magnetic particle imaging technology. An optimized isotropic field-free region (FFR) generation method using a magnetic manipulation system (MMS) is derived and numerically investigated. The in-vitro and in-vivo tracking performances are demonstrated with a high position accuracy of approximately 1 mm. A newly proposed tracking method was developed, specialized in vascular system, with quick scanning time (about 1s). In this paper, the primary function of the proposed system is to track magnetic particles using a magnetic manipulation system. Through this, proposed method enables the conventional magnetic actuation systems to upgrade the functionalities of both manipulation and localization of magnetic objects.
Collapse
Affiliation(s)
- Kim Tien Nguyen
- Korea Institute of Medical Microrobotics, Gwangju, 61011, South Korea
| | - Minh Phu Bui
- School of Integrated Technology, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Tuan-Anh Le
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Seok Jae Kim
- Korea Institute of Medical Microrobotics, Gwangju, 61011, South Korea
| | - Ho Young Kim
- Department of Nanobiomedical Science, Dankook University, Chungnam, 31116, South Korea
| | - Jungwon Yoon
- School of Integrated Technology, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, Gwangju, 61011, South Korea.
| | - Jayoung Kim
- Korea Institute of Medical Microrobotics, Gwangju, 61011, South Korea.
| |
Collapse
|
5
|
Ping J, Liu W, Chen Z, Li C. Lymph node metastases in breast cancer: Mechanisms and molecular imaging. Clin Imaging 2023; 103:109985. [PMID: 37757640 DOI: 10.1016/j.clinimag.2023.109985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Breast cancer is the most common malignant disease of women in the world. Breast cancer often metastasizes to axillary lymph nodes. Accurate assessment of the status of axillary lymph nodes is crucial to the staging and treatment of breast cancer. None of the methods used clinically for preoperative noninvasive examination of axillary lymph nodes can accurately identify cancer cells from a molecular level. In recent years, with the in-depth study of lymph node metastases, the mechanisms and molecular imaging of lymph node metastases in breast cancer have been reported. In this review, we highlight the new progress in the study of the main mechanisms of lymph node metastases in breast cancer. In addition, we analyze the advantages and disadvantages of traditional preoperative axillary lymph node imaging methods for breast cancer, and list molecular imaging methods that can accurately identify breast cancer cells in lymph nodes.
Collapse
Affiliation(s)
- Jieyi Ping
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Wei Liu
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Zhihui Chen
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Cuiying Li
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China.
| |
Collapse
|
6
|
Engels S, Michalik B, Dirks L, van Oosterom MN, Wawroschek F, Winter A. A Fluorescent and Magnetic Hybrid Tracer for Improved Sentinel Lymphadenectomy in Prostate Cancer Patients. Biomedicines 2023; 11:2779. [PMID: 37893150 PMCID: PMC10604386 DOI: 10.3390/biomedicines11102779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
In prostate cancer, sentinel lymph node dissection (sLND) offers a personalized procedure with staging ability which is at least equivalent to extended LND while inducing lower morbidity. A bimodal fluorescent-radioactive approach was introduced to improve sentinel LN (SLN) detection. We present the first in-human case series on exploring the use of a fluorescent-magnetic hybrid tracer in a radiation-free sLND procedure. Superparamagnetic iron oxide nanoparticles and indocyanine green were administered simultaneously in five prostate cancer patients scheduled for extended LND, sLND and radical prostatectomy. In situ and ex vivo fluorescence and magnetic signals were documented for each LN sample detected via a laparoscopic fluorescence imaging and magnetometer system. Fluorescence and magnetic activity could be detected in all patients. Overall, 19 lymph node spots could be detected in situ, 14 of which were fluorescently active and 18 of which were magnetically active. In two patients, no fluorescent LNs could be detected in situ. The separation of the LN samples resulted in a total number of 30 SLNs resected. Ex vivo measurements confirmed fluorescence in all but two magnetically active SLNs. One LN detected in situ with both modalities was subsequently shown to contain a metastasis. This study provides the first promising results of a bimodal, radiation-free sLND, combining the advantages of both the magnetic and fluorescence approaches.
Collapse
Affiliation(s)
- Svenja Engels
- University Hospital for Urology, Klinikum Oldenburg, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany; (S.E.); (B.M.); (L.D.); (F.W.)
| | - Bianca Michalik
- University Hospital for Urology, Klinikum Oldenburg, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany; (S.E.); (B.M.); (L.D.); (F.W.)
| | - Lena Dirks
- University Hospital for Urology, Klinikum Oldenburg, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany; (S.E.); (B.M.); (L.D.); (F.W.)
| | - Matthias N. van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Friedhelm Wawroschek
- University Hospital for Urology, Klinikum Oldenburg, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany; (S.E.); (B.M.); (L.D.); (F.W.)
| | - Alexander Winter
- University Hospital for Urology, Klinikum Oldenburg, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany; (S.E.); (B.M.); (L.D.); (F.W.)
| |
Collapse
|
7
|
Bortot B, Mangogna A, Di Lorenzo G, Stabile G, Ricci G, Biffi S. Image-guided cancer surgery: a narrative review on imaging modalities and emerging nanotechnology strategies. J Nanobiotechnology 2023; 21:155. [PMID: 37202750 DOI: 10.1186/s12951-023-01926-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023] Open
Abstract
Surgical resection is the cornerstone of solid tumour treatment. Current techniques for evaluating margin statuses, such as frozen section, imprint cytology, and intraoperative ultrasound, are helpful. However, an intraoperative assessment of tumour margins that is accurate and safe is clinically necessary. Positive surgical margins (PSM) have a well-documented negative effect on treatment outcomes and survival. As a result, surgical tumour imaging methods are now a practical method for reducing PSM rates and improving the efficiency of debulking surgery. Because of their unique characteristics, nanoparticles can function as contrast agents in image-guided surgery. While most image-guided surgical applications utilizing nanotechnology are now in the preclinical stage, some are beginning to reach the clinical phase. Here, we list the various imaging techniques used in image-guided surgery, such as optical imaging, ultrasound, computed tomography, magnetic resonance imaging, nuclear medicine imaging, and the most current developments in the potential of nanotechnology to detect surgical malignancies. In the coming years, we will see the evolution of nanoparticles tailored to specific tumour types and the introduction of surgical equipment to improve resection accuracy. Although the promise of nanotechnology for producing exogenous molecular contrast agents has been clearly demonstrated, much work remains to be done to put it into practice.
Collapse
Affiliation(s)
- Barbara Bortot
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Alessandro Mangogna
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Giovanni Di Lorenzo
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Guglielmo Stabile
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Giuseppe Ricci
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Stefania Biffi
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy.
| |
Collapse
|
8
|
Małkiewicz B, Kiełb P, Kobylański M, Karwacki J, Poterek A, Krajewski W, Zdrojowy R, Szydełko T. Sentinel Lymph Node Techniques in Urologic Oncology: Current Knowledge and Application. Cancers (Basel) 2023; 15:cancers15092495. [PMID: 37173960 PMCID: PMC10177100 DOI: 10.3390/cancers15092495] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Lymph node (LN) metastases have a significant negative impact on the prognosis of urological malignancies. Unfortunately, current imaging modalities are insufficient when it comes to detecting micrometastases; thus, surgical LN removal is commonly used. However, there is still no established ideal lymph node dissection (LND) template, leading to unnecessary invasive staging and the possibility of missing LN metastases located outside the standard template. To address this issue, the sentinel lymph node (SLN) concept has been proposed. This technique involves identifying and removing the first group of draining LNs, which can accurately stage cancer. While successful in breast cancer and melanoma, the SLN technique in urologic oncology is still considered experimental due to high false-negative rates and lack of data in prostate, bladder, and kidney cancer. Nevertheless, the development of new tracers, imaging modalities, and surgical techniques may improve the potential of the SLN procedures in urological oncology. In this review, we aim to discuss the current knowledge and future contributions of the SLN procedure in the management of urological malignancies.
Collapse
Affiliation(s)
- Bartosz Małkiewicz
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Paweł Kiełb
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Maximilian Kobylański
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Jakub Karwacki
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Adrian Poterek
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Wojciech Krajewski
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Romuald Zdrojowy
- University Center of Excellence in Urology, Department of Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Tomasz Szydełko
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
9
|
Peng Z, Lu C, Shi G, Yin L, Liang X, Song G, Tian J, Du Y. Sensitive and quantitative in vivo analysis of PD-L1 using magnetic particle imaging and imaging-guided immunotherapy. Eur J Nucl Med Mol Imaging 2023; 50:1291-1305. [PMID: 36504279 DOI: 10.1007/s00259-022-06083-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE The programmed cell death protein-1 (PD-1) and programmed cell death ligand-1 (PD-L1) expression correlate with the immunotherapeutic response rate. The sensitive and non-invasive imaging of immune checkpoint biomarkers is favorable for the accurate detection and characterization, image-guided immunotherapy in cancer precision medicine. Magnetic particle imaging (MPI), as a novel and emerging imaging modality, possesses the advantages of high sensitivity, no image depth limitation, positive contrast, and absence of radiation. Hence, in this study, we performed the pioneer investigation of monitoring PD-L1 expression using MPI and the MPI-guided immunotherapy. METHODS We developed anti-PD-L1 antibody (aPDL1)-conjugated magnetic fluorescent hybrid nanoparticles (MFNPs-aPDL1) and utilized MPI in combination with fluorescence imaging (FMI) to dynamically monitor and quantify PD-L1 expression in various tumors with different PD-L1 expression levels. The ex vivo real-time polymerase chain reaction (qPCR), western blotting, and immunofluorescence staining analysis were further performed to validate the in vivo imaging observation. Moreover, the MPI was further performed for the guidance of immunotherapy. RESULTS Our data showed that PD-L1 expression can be specifically and sensitively monitored and quantified using MPI and FMI imaging methods, which were validated by ex vivo qPCR and western blotting analysis. In addition, MPI-guided PD-L1 immunotherapy can enhance the effectiveness of cancer immunotherapy. CONCLUSION To our best knowledge, this is the pioneer study to utilize MPI in combination with a newly developed MFNPs-aPDL1 imaging probe to dynamically visualize and quantify PD-L1 expression in tumor microenvironment. This imaging strategy may facilitate the clinical optimization of immunotherapy management.
Collapse
Affiliation(s)
- Zhengyao Peng
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Chang Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Shenzhen Research Institution of Hunan University, Hunan University, Changsha, 410082, China
| | - Guangyuan Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Lin Yin
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Shenzhen Research Institution of Hunan University, Hunan University, Changsha, 410082, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, China.
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100080, China.
| |
Collapse
|
10
|
Yang CW, Liu K, Yao CY, Li B, Juhong A, Qiu Z, Huang X. Indocyanine Green-Conjugated Superparamagnetic Iron Oxide Nanoworm for Multimodality Breast Cancer Imaging. ACS APPLIED NANO MATERIALS 2022; 5:18912-18920. [PMID: 37635916 PMCID: PMC10448907 DOI: 10.1021/acsanm.2c04687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Breast cancer is the leading cause of cancer-associated deaths among women. Techniques for non-invasive breast cancer detection and imaging are urgently needed. Multimodality breast cancer imaging is attractive since it can integrate advantages from several modalities, enabling more accurate cancer detection. In order to accomplish this, indocyanine green (ICG)-conjugated superparamagnetic iron oxide nanoworm (NW-ICG) has been synthesized as a contrast agent. When evaluated in a spontaneous mouse breast cancer model, NW-ICG gave a large tumor to normal tissue contrasts in multiple imaging modalities including magnetic particle imaging, near-infrared fluorescence imaging, and photoacoustic imaging, providing more comprehensive detection and imaging of breast cancer. Thus, NW-ICGs are an attractive platform for non-invasive breast cancer diagnosis.
Collapse
Affiliation(s)
- Chia-Wei Yang
- Department of Chemistry and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kunli Liu
- Department of Chemistry and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Cheng-You Yao
- Institute for Quantitative Health Science and Engineering and Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Bo Li
- Institute for Quantitative Health Science and Engineering and Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Aniwat Juhong
- Institute for Quantitative Health Science and Engineering and Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Zhen Qiu
- Institute for Quantitative Health Science and Engineering, Department of Electrical and Computer Engineering, and Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xuefei Huang
- Department of Chemistry, Institute for Quantitative Health Science and Engineering, and Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
11
|
Krishnan G, Cousins A, Pham N, Milanova V, Nelson M, Krishnan S, van den Berg NS, Shetty A, Rosenthal EL, Wormald P, Thierry B, Foreman A, Krishnan S. Preclinical feasibility of robot-assisted sentinel lymph node biopsy using multi-modality magnetic and fluorescence guidance in the head and neck. Head Neck 2022; 44:2696-2707. [PMID: 36082404 PMCID: PMC9825899 DOI: 10.1002/hed.27177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2022] [Accepted: 08/16/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Sentinel lymph node biopsy (SLNB) is a staging procedure dependent on accurate mapping of draining lymphatics via tracers. Robot-assisted SLNB enables access to multiple neck levels with a single incision and intraoperative fluorescence guidance to the SLN. METHODS Lymphatic mapping in swine was done using a magnetic tracer and fluorescent dye, injected into the tongue. MRI preoperatively mapped lymphatic spread of the magnetic tracer. Dissection was performed using a da Vinci Xi robot guided by fluorescence-imaging of the dye. RESULTS Robot-assisted SLNB was successfully performed in all animals (n = 5). A novel MRI protocol differentiated SLNs (n = 6) from lower echelon nodes (n = 11) based on flow progression. Fluorescence imaging provided valuable intraoperative guidance and correlated with magnetic-positive nodes. CONCLUSIONS This study demonstrates preclinical feasibility of a robot-assisted approach to SLNB using magnetic and fluorescent tracers in the head and neck, enabling both preoperative mapping and intraoperative guidance.
Collapse
Affiliation(s)
- Giri Krishnan
- Department of Otolaryngology, Head and Neck SurgeryThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Aidan Cousins
- Future Industries InstituteUniversity of South Australia, Mawson Lakes CampusAdelaideSouth AustraliaAustralia
| | - Nguyen Pham
- Key Centre for Polymers and Colloids, School of Chemistry and University of Sydney Nano InstituteThe University of SydneySydneyNew South WalesAustralia
| | - Valentina Milanova
- Future Industries InstituteUniversity of South Australia, Mawson Lakes CampusAdelaideSouth AustraliaAustralia
| | | | - Shridhar Krishnan
- Department of Oral and Maxillofacial SurgeryThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Nynke S. van den Berg
- Department of Otolaryngology—Division of Head and Neck SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Anil Shetty
- Ferronova Pty LtdAdelaideSouth AustraliaAustralia
| | - Eben L. Rosenthal
- Department of Otolaryngology—Division of Head and Neck SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Peter‐John Wormald
- Department of Otolaryngology, Head and Neck SurgeryThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Benjamin Thierry
- Future Industries InstituteUniversity of South Australia, Mawson Lakes CampusAdelaideSouth AustraliaAustralia
| | - Andrew Foreman
- Department of Otolaryngology, Head and Neck SurgeryThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Suren Krishnan
- Department of Otolaryngology, Head and Neck SurgeryThe University of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
12
|
Liao Y, Zhao J, Chen Y, Zhao B, Fang Y, Wang F, Wei C, Ma Y, Ji H, Wang D, Tang D. Mapping Lymph Node during Indocyanine Green Fluorescence-Imaging Guided Gastric Oncologic Surgery: Current Applications and Future Directions. Cancers (Basel) 2022; 14:5143. [PMID: 36291927 PMCID: PMC9601265 DOI: 10.3390/cancers14205143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Huge strides have been made in the navigation of gastric cancer surgery thanks to the improvement of intraoperative techniques. For now, the use of indocyanine green (ICG) enhanced fluorescence imaging has received promising results in detecting sentinel lymph nodes (SLNs) and tracing lymphatic drainages, which make it applicable for limited and precise lymphadenectomy. Nevertheless, issues of the lack of specificity and unpredictable false-negative lymph nodes were encountered in gastric oncologic surgery practice using ICG-enhanced fluorescence imaging (ICG-FI), which restrict its application. Here, we reviewed the current application of ICG-FI and assessed potential approaches to improving ICG-FI.
Collapse
Affiliation(s)
- Yiqun Liao
- Department of Clinical Medical College, The Yangzhou School of Clinical Medicine, Dalian Medical University, Dalian 116044, China
| | - Jiahao Zhao
- Department of Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yuji Chen
- Department of Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Bin Zhao
- Department of Clinical Medical College, The Yangzhou School of Clinical Medicine, Dalian Medical University, Dalian 116044, China
| | - Yongkun Fang
- Department of Clinical Medical College, The Yangzhou School of Clinical Medicine, Dalian Medical University, Dalian 116044, China
| | - Fei Wang
- Department of Clinical Medical College, The Yangzhou School of Clinical Medicine, Dalian Medical University, Dalian 116044, China
| | - Chen Wei
- Department of Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yichao Ma
- Department of Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Hao Ji
- Department of Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Daorong Wang
- Department of General Surgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Dong Tang
- Department of General Surgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| |
Collapse
|
13
|
Boekestijn I, van Oosterom MN, Dell'Oglio P, van Velden FHP, Pool M, Maurer T, Rietbergen DDD, Buckle T, van Leeuwen FWB. The current status and future prospects for molecular imaging-guided precision surgery. Cancer Imaging 2022; 22:48. [PMID: 36068619 PMCID: PMC9446692 DOI: 10.1186/s40644-022-00482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/21/2022] [Indexed: 01/19/2023] Open
Abstract
Molecular imaging technologies are increasingly used to diagnose, monitor, and guide treatment of i.e., cancer. In this review, the current status and future prospects of the use of molecular imaging as an instrument to help realize precision surgery is addressed with focus on the main components that form the conceptual basis of intraoperative molecular imaging. Paramount for successful interventions is the relevance and accessibility of surgical targets. In addition, selection of the correct combination of imaging agents and modalities is critical to visualize both microscopic and bulk disease sites with high affinity and specificity. In this context developments within engineering/imaging physics continue to drive the growth of image-guided surgery. Particularly important herein is enhancement of sensitivity through improved contrast and spatial resolution, features that are critical if sites of cancer involvement are not to be overlooked during surgery. By facilitating the connection between surgical planning and surgical execution, digital surgery technologies such as computer-aided visualization nicely complement these technologies. The complexity of image guidance, combined with the plurality of technologies that are becoming available, also drives the need for evaluation mechanisms that can objectively score the impact that technologies exert on the performance of healthcare professionals and outcome improvement for patients.
Collapse
Affiliation(s)
- Imke Boekestijn
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthias N van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Paolo Dell'Oglio
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Urology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Floris H P van Velden
- Medical Physics, Department of Radiology , Leiden University Medical Center, Leiden, the Netherlands
| | - Martin Pool
- Department of Clinical Farmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tobias Maurer
- Martini-Klinik Prostate Cancer Centre Hamburg, Hamburg, Germany
| | - Daphne D D Rietbergen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
14
|
Yang X, Shao G, Zhang Y, Wang W, Qi Y, Han S, Li H. Applications of Magnetic Particle Imaging in Biomedicine: Advancements and Prospects. Front Physiol 2022; 13:898426. [PMID: 35846005 PMCID: PMC9285659 DOI: 10.3389/fphys.2022.898426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/16/2022] [Indexed: 01/09/2023] Open
Abstract
Magnetic particle imaging (MPI) is a novel emerging noninvasive and radiation-free imaging modality that can quantify superparamagnetic iron oxide nanoparticles tracers. The zero endogenous tissue background signal and short image scanning times ensure high spatial and temporal resolution of MPI. In the context of precision medicine, the advantages of MPI provide a new strategy for the integration of the diagnosis and treatment of diseases. In this review, after a brief explanation of the simplified theory and imaging system, we focus on recent advances in the biomedical application of MPI, including vascular structure and perfusion imaging, cancer imaging, the MPI guidance of magnetic fluid hyperthermia, the visual monitoring of cell and drug treatments, and intraoperative navigation. We finally optimize MPI in terms of the system and tracers, and present future potential biomedical applications of MPI.
Collapse
Affiliation(s)
- Xue Yang
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | | | - Yanyan Zhang
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Yu Qi
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Shuai Han
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Hongjun Li
- Beijing You’an Hospital, Capital Medical University, Beijing, China,*Correspondence: Hongjun Li,
| |
Collapse
|
15
|
Nemitz L, Vincke A, Michalik B, Engels S, Meyer LM, Henke RP, Wawroschek F, Winter A. Radioisotope-Guided Sentinel Lymph Node Biopsy in Penile Cancer: A Long-Term Follow-Up Study. Front Oncol 2022; 12:850905. [PMID: 35494039 PMCID: PMC9046689 DOI: 10.3389/fonc.2022.850905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Lymph node (LN) management is critical for survival in patients with penile cancer. However, radical inguinal lymphadenectomy carries a high risk of postoperative complications such as lymphedema, lymphocele, wound infection, and skin necrosis. The European Association of Urology guidelines therefore recommend invasive LN staging by modified inguinal lymphadenectomy or dynamic sentinel node biopsy (DSNB) in clinically node-negative patients (cN0) with intermediate- and high-risk tumors (≥ T1G2). However, the timing of DSNB (simultaneous vs. subsequent to partial or total penile resection) is controversial and the low incidence of penile cancer means that data on the long-term outcomes of DSNB are limited. The present study aimed to analyze the reliability and morbidity of DSNB in patients with penile cancer during long-term follow-up. This retrospective study included 41 patients (76 groins) who underwent radioisotope-guided DSNB simultaneously or secondarily after penile surgery from June 2004 to November 2018. In total, 193 sentinel LNs (SLNs) and 39 non-SLNs were removed. The median number of dissected LNs was 2.5 (interquartile range 2-4). Histopathological analysis showed that five of the 76 groins (6.6%) contained metastases. None of the non-SLNs were tumor-positive. In accordance with the guidelines, all inguinal regions with positive SLNs underwent secondary radical inguinal lymphadenectomy, which revealed three additional metastases in one groin. Regional LN recurrence was detected in three patients (four groins) during a median follow-up of 70 months, including two patients in whom DSNB had been performed secondarily after repetitive penile tumor resections. DSNB-related complications occurred in 15.8% of groins. Most complications were mild (Clavien-Dindo grade I; 50%) or moderate (II; 25%), and invasive intervention was only required in 3.9% of groins (IIIa: n = 1; IIIb: n = 2). In summary, this study suggests that the current radioisotope-guided DSNB procedure may reduce the complication rate of inguinal lymphadenectomy in patients with cN0 penile cancer. However, DSNB and penile surgery should be performed simultaneously to minimize the false-negative rate. Recent advances, such as new tracers and imaging techniques, may help to reduce the false-negative rate of DSNB further.
Collapse
Affiliation(s)
- Lena Nemitz
- University Hospital for Urology, Klinikum Oldenburg, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Anna Vincke
- University Hospital for Urology, Klinikum Oldenburg, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Bianca Michalik
- University Hospital for Urology, Klinikum Oldenburg, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Svenja Engels
- University Hospital for Urology, Klinikum Oldenburg, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Luca-Marie Meyer
- University Hospital for Urology, Klinikum Oldenburg, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | | | - Friedhelm Wawroschek
- University Hospital for Urology, Klinikum Oldenburg, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Alexander Winter
- University Hospital for Urology, Klinikum Oldenburg, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|