1
|
Yangi K, Hong J, Gholami AS, On TJ, Reed AG, Puppalla P, Chen J, Calderon Valero CE, Xu Y, Li B, Santello M, Lawton MT, Preul MC. Deep learning in neurosurgery: a systematic literature review with a structured analysis of applications across subspecialties. Front Neurol 2025; 16:1532398. [PMID: 40308224 PMCID: PMC12040697 DOI: 10.3389/fneur.2025.1532398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/04/2025] [Indexed: 05/02/2025] Open
Abstract
Objective This study systematically reviewed deep learning (DL) applications in neurosurgical practice to provide a comprehensive understanding of DL in neurosurgery. The review process included a systematic overview of recent developments in DL technologies, an examination of the existing literature on their applications in neurosurgery, and insights into the future of neurosurgery. The study also summarized the most widely used DL algorithms, their specific applications in neurosurgical practice, their limitations, and future directions. Materials and methods An advanced search using medical subject heading terms was conducted in Medline (via PubMed), Scopus, and Embase databases restricted to articles published in English. Two independent neurosurgically experienced reviewers screened selected articles. Results A total of 456 articles were initially retrieved. After screening, 162 were found eligible and included in the study. Reference lists of all 162 articles were checked, and 19 additional articles were found eligible and included in the study. The 181 included articles were divided into 6 categories according to the subspecialties: general neurosurgery (n = 64), neuro-oncology (n = 49), functional neurosurgery (n = 32), vascular neurosurgery (n = 17), neurotrauma (n = 9), and spine and peripheral nerve (n = 10). The leading procedures in which DL algorithms were most commonly used were deep brain stimulation and subthalamic and thalamic nuclei localization (n = 24) in the functional neurosurgery group; segmentation, identification, classification, and diagnosis of brain tumors (n = 29) in the neuro-oncology group; and neuronavigation and image-guided neurosurgery (n = 13) in the general neurosurgery group. Apart from various video and image datasets, computed tomography, magnetic resonance imaging, and ultrasonography were the most frequently used datasets to train DL algorithms in all groups overall (n = 79). Although there were few studies involving DL applications in neurosurgery in 2016, research interest began to increase in 2019 and has continued to grow in the 2020s. Conclusion DL algorithms can enhance neurosurgical practice by improving surgical workflows, real-time monitoring, diagnostic accuracy, outcome prediction, volumetric assessment, and neurosurgical education. However, their integration into neurosurgical practice involves challenges and limitations. Future studies should focus on refining DL models with a wide variety of datasets, developing effective implementation techniques, and assessing their affect on time and cost efficiency.
Collapse
Affiliation(s)
- Kivanc Yangi
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Jinpyo Hong
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Arianna S. Gholami
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Thomas J. On
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Alexander G. Reed
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Pravarakhya Puppalla
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Jiuxu Chen
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, United States
| | - Carlos E. Calderon Valero
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Yuan Xu
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Baoxin Li
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, United States
| | - Marco Santello
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Michael T. Lawton
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Mark C. Preul
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
2
|
Zeineldin RA, Karar ME, Burgert O, Mathis-Ullrich F. NeuroIGN: Explainable Multimodal Image-Guided System for Precise Brain Tumor Surgery. J Med Syst 2024; 48:25. [PMID: 38393660 DOI: 10.1007/s10916-024-02037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/03/2024] [Indexed: 02/25/2024]
Abstract
Precise neurosurgical guidance is critical for successful brain surgeries and plays a vital role in all phases of image-guided neurosurgery (IGN). Neuronavigation software enables real-time tracking of surgical tools, ensuring their presentation with high precision in relation to a virtual patient model. Therefore, this work focuses on the development of a novel multimodal IGN system, leveraging deep learning and explainable AI to enhance brain tumor surgery outcomes. The study establishes the clinical and technical requirements of the system for brain tumor surgeries. NeuroIGN adopts a modular architecture, including brain tumor segmentation, patient registration, and explainable output prediction, and integrates open-source packages into an interactive neuronavigational display. The NeuroIGN system components underwent validation and evaluation in both laboratory and simulated operating room (OR) settings. Experimental results demonstrated its accuracy in tumor segmentation and the success of ExplainAI in increasing the trust of medical professionals in deep learning. The proposed system was successfully assembled and set up within 11 min in a pre-clinical OR setting with a tracking accuracy of 0.5 (± 0.1) mm. NeuroIGN was also evaluated as highly useful, with a high frame rate (19 FPS) and real-time ultrasound imaging capabilities. In conclusion, this paper describes not only the development of an open-source multimodal IGN system but also demonstrates the innovative application of deep learning and explainable AI algorithms in enhancing neuronavigation for brain tumor surgeries. By seamlessly integrating pre- and intra-operative patient image data with cutting-edge interventional devices, our experiments underscore the potential for deep learning models to improve the surgical treatment of brain tumors and long-term post-operative outcomes.
Collapse
Affiliation(s)
- Ramy A Zeineldin
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University Erlangen-Nürnberg, 91052, Erlangen, Germany.
- Research Group Computer Assisted Medicine (CaMed), Reutlingen University, 72762, Reutlingen, Germany.
- Faculty of Electronic Engineering (FEE), Menoufia University, Minuf, 32952, Egypt.
| | - Mohamed E Karar
- Faculty of Electronic Engineering (FEE), Menoufia University, Minuf, 32952, Egypt
| | - Oliver Burgert
- Research Group Computer Assisted Medicine (CaMed), Reutlingen University, 72762, Reutlingen, Germany
| | - Franziska Mathis-Ullrich
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University Erlangen-Nürnberg, 91052, Erlangen, Germany
| |
Collapse
|
3
|
Masoumi N, Rivaz H, Hacihaliloglu I, Ahmad MO, Reinertsen I, Xiao Y. The Big Bang of Deep Learning in Ultrasound-Guided Surgery: A Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:909-919. [PMID: 37028313 DOI: 10.1109/tuffc.2023.3255843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Ultrasound (US) imaging is a paramount modality in many image-guided surgeries and percutaneous interventions, thanks to its high portability, temporal resolution, and cost-efficiency. However, due to its imaging principles, the US is often noisy and difficult to interpret. Appropriate image processing can greatly enhance the applicability of the imaging modality in clinical practice. Compared with the classic iterative optimization and machine learning (ML) approach, deep learning (DL) algorithms have shown great performance in terms of accuracy and efficiency for US processing. In this work, we conduct a comprehensive review on deep-learning algorithms in the applications of US-guided interventions, summarize the current trends, and suggest future directions on the topic.
Collapse
|