1
|
Venugopal S, Ghulam-Jhelani Z, Ahn IS, Yang X, Wiedau M, Simmons D, Chandler SH. Early deficits in GABA inhibition parallels an increase in L-type Ca 2+ currents in the jaw motor neurons of SOD1 G93A mouse model for ALS. Neurobiol Dis 2023; 177:105992. [PMID: 36623607 DOI: 10.1016/j.nbd.2023.105992] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) involves protracted pre-symptomatic periods of abnormal motor neuron (MN) excitability occurring in parallel with central and peripheral synaptic perturbations. Focusing on inhibitory control of MNs, we first compared longitudinal changes in pre-synaptic terminal proteins for GABA and glycine neurotransmitters around the soma of retrogradely identified trigeminal jaw closer (JC) MNs and ChAT-labeled midbrain extraocular (EO) MNs in the SOD1G93A mouse model for ALS. Fluorescence immunocytochemistry and confocal imaging were used to quantify GAD67 and GlyT2 synaptic bouton density (SBD) around MN soma at pre-symptomatic ages ∼P12 (postnatal), ∼P50 (adult) and near disease end-stage (∼P135) in SOD1G93A mice and age-matched wild-type (WT) controls. We noted reduced GAD67 innervation in the SOD1G93A trigeminal jaw closer MNs around P12, relative to age-matched WT and no significant difference around P50 and P135. In contrast, both GAD67 and GlyT2 innervation were elevated in the SOD1G93A EO MNs at the pre-symptomatic time points. Considering trigeminal MNs are vulnerable in ALS while EO MNs are spared, we suggest that upregulation of inhibition in the latter might be compensatory. Notable contrast also existed in the innate co-expression patterns of GAD67 and GlyT2 with higher mutual information (co-dependency) in EO MNs compared to JC in both SOD1G93A and WT mice, especially at adult stages (P50 and P135). Around P12 when GAD67 terminals expression was low in the mutant, we further tested for persistent GABA inhibition in those MNs using in vitro patch-clamp electrophysiology. Our results show that SOD1G93A JC MNs have reduced persistent GABA inhibition, relative to WT. Pharmacological blocking of an underlying tonically active GABA conductance using the GABA-α5 subunit inverse agonist, L-655-708, disinhibited WT JC MNs and lowered their recruitment threshold, suggesting its role in the control of intrinsic MN excitability. Quantitative RT-PCR in laser dissected JC MNs further supported a reduction in GABA-α5 subunit mRNA expression in the mutant. In light of our previous report that JC MNs forming putative fast motor units have lower input threshold in the SOD1G93A mice, we suggest that our present result on reduced GABA-α5 tonic inhibition provides for a mechanism contributing to such imbalance. In parallel with reduced GABA inhibition, we noted an increase in voltage-gated L-type Ca2+ currents in the mutant JC MNs around P12. Together these results support that, early modifications in intrinsic properties of vulnerable MNs could be an adaptive response to counter synaptic deficits.
Collapse
Affiliation(s)
- Sharmila Venugopal
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Neurology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Zohal Ghulam-Jhelani
- Undergraduate Interdepartmental Program for Neuroscience, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Martina Wiedau
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dwayne Simmons
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Scott H Chandler
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Cui Z, Lin J, Fu X, Zhang S, Li P, Wu X, Wang X, Chen W, Zhu S, Li Y. Construction of the dynamic model of SCI rehabilitation using bidirectional stimulation and its application in rehabilitating with BCI. Cogn Neurodyn 2023; 17:169-181. [PMID: 36704625 PMCID: PMC9871133 DOI: 10.1007/s11571-022-09804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/04/2022] [Accepted: 03/26/2022] [Indexed: 01/29/2023] Open
Abstract
Patients with complete spinal cord injury have a complete loss of motor and sensory functions below the injury plane, leading to a complete loss of function of the nerve pathway in the injured area. Improving the microenvironment in the injured area of patients with spinal cord injury, promoting axon regeneration of the nerve cells is challenging research fields. The brain-computer interface rehabilitation system is different from the other rehabilitation techniques. It can exert bidirectional stimulation on the spinal cord injury area, and can make positively rehabilitation effects of the patient with complete spinal cord injury. A dynamic model was constructed for the patient with spinal cord injury under-stimulation therapy, and the mechanism of the brain-computer interface in rehabilitation training was explored. The effects of the three current rehabilitation treatment methods on the microenvironment in a microscopic nonlinear model were innovatively unified and a complex system mapping relationship from the microscopic axon growth to macroscopic motor functions was constructed. The basic structure of the model was determined by simulating and fitting the data of the open rat experiments. A clinical rehabilitation experiment of spinal cord injury based on brain-computer interface was built, recruiting a patient with complete spinal cord injury, and the rehabilitation training and follow-up were conducted. The changes in the motor function of the patient was simulated and predicted through the constructed model, and the trend in the motor function improvement was successfully predicted over time. This proposed model explores the mechanism of brain-computer interface in rehabilitating patients with complete spinal cord injury, and it is also an application of complex system theory in rehabilitation medicine. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09804-3.
Collapse
Affiliation(s)
- Zhengzhe Cui
- School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Juan Lin
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangxiang Fu
- School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | | | - Peng Li
- School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Xixi Wu
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xue Wang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weidong Chen
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Shiqiang Zhu
- School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Yongqiang Li
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| |
Collapse
|
3
|
Deardorff AS, Romer SH, Fyffe RE. Location, location, location: the organization and roles of potassium channels in mammalian motoneurons. J Physiol 2021; 599:1391-1420. [DOI: 10.1113/jp278675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/08/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Adam S. Deardorff
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine Dayton OH 45435 USA
- Department of Neurology and Internal Medicine, Wright State University Boonshoft School of Medicine Dayton OH 45435 USA
| | - Shannon H. Romer
- Odyssey Systems Environmental Health Effects Laboratory, Navy Medical Research Unit‐Dayton Wright‐Patterson Air Force Base OH 45433 USA
| | - Robert E.W. Fyffe
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine Dayton OH 45435 USA
| |
Collapse
|
4
|
Meneghel MC, Manffra EF, Neto GNN. A Tool to Select FES Parameters for chronic SCI .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:3799-3802. [PMID: 31946701 DOI: 10.1109/embc.2019.8857421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Functional electrical stimulation has been used in rehabilitation programs for patients with chronic spinal cord injury. When used correctly it is able to improve the well-being of patients. However, when the stimulus is not adequate it can accelerate the process of fatigue, reducing the time available for training the programmed motor activity. To optimize the configuration of the stimulatory parameters, we developed a tool capable of simulating the muscle strength performance in response to different stimulatory profiles. The tool was able to reproduce the behavior of motoneurons in chronic spinal cord injury and to estimate the muscular strength resulting from the application of different stimuli. We consider that this FES Simulator is a promising tool to design and simulate different profiles of electrical stimulation, optimizing the decision process of the stimulation parameters.
Collapse
|
5
|
Circuit-Specific Early Impairment of Proprioceptive Sensory Neurons in the SOD1 G93A Mouse Model for ALS. J Neurosci 2019; 39:8798-8815. [PMID: 31530644 DOI: 10.1523/jneurosci.1214-19.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/24/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons degenerate, resulting in muscle atrophy, paralysis, and fatality. Studies using mouse models of ALS indicate a protracted period of disease development with progressive motor neuron pathology, evident as early as embryonic and postnatal stages. Key missing information includes concomitant alterations in the sensorimotor circuit essential for normal development and function of the neuromuscular system. Leveraging unique brainstem circuitry, we show in vitro evidence for reflex circuit-specific postnatal abnormalities in the jaw proprioceptive sensory neurons in the well-studied SOD1G93A mouse. These include impaired and arrhythmic action potential burst discharge associated with a deficit in Nav1.6 Na+ channels. However, the mechanoreceptive and nociceptive trigeminal ganglion neurons and the visual sensory retinal ganglion neurons were resistant to excitability changes in age-matched SOD1G93A mice. Computational modeling of the observed disruption in sensory patterns predicted asynchronous self-sustained motor neuron discharge suggestive of imminent reflexive defects, such as muscle fasciculations in ALS. These results demonstrate a novel reflex circuit-specific proprioceptive sensory abnormality in ALS.SIGNIFICANCE STATEMENT Neurodegenerative diseases have prolonged periods of disease development and progression. Identifying early markers of vulnerability can therefore help devise better diagnostic and treatment strategies. In this study, we examined postnatal abnormalities in the electrical excitability of muscle spindle afferent proprioceptive neurons in the well-studied SOD1G93A mouse model for neurodegenerative motor neuron disease, amyotrophic lateral sclerosis. Our findings suggest that these proprioceptive sensory neurons are exclusively afflicted early in the disease process relative to sensory neurons of other modalities. Moreover, they presented Nav1.6 Na+ channel deficiency, which contributed to arrhythmic burst discharge. Such sensory arrhythmia could initiate reflexive defects, such as muscle fasciculations in amyotrophic lateral sclerosis, as suggested by our computational model.
Collapse
|
6
|
Garcia VB, Abbinanti MD, Harris-Warrick RM, Schulz DJ. Effects of Chronic Spinal Cord Injury on Relationships among Ion Channel and Receptor mRNAs in Mouse Lumbar Spinal Cord. Neuroscience 2018; 393:42-60. [PMID: 30282002 DOI: 10.1016/j.neuroscience.2018.09.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 01/08/2023]
Abstract
Spinal cord injury (SCI) causes widespread changes in gene expression of the spinal cord, even in the undamaged spinal cord below the level of the lesion. Less is known about changes in the correlated expression of genes after SCI. We investigated gene co-expression networks among voltage-gated ion channel and neurotransmitter receptor mRNA levels using quantitative RT-PCR in longitudinal slices of the mouse lumbar spinal cord in control and chronic SCI animals. These longitudinal slices were made from the ventral surface of the cord, thus forming slices relatively enriched in motor neurons or interneurons. We performed absolute quantitation of mRNA copy number for 50 ion channel or receptor transcripts from each sample, and used multiple correlation analyses to detect patterns in correlated mRNA levels across all pairs of genes. The majority of channels and receptors changed in expression as a result of chronic SCI, but did so differently across slice levels. Furthermore, motor neuron-enriched slices experienced an overall loss of correlated channel and receptor expression, while interneuron slices showed a dramatic increase in the number of positively correlated transcripts. These correlation profiles suggest that spinal cord injury induces distinct changes across cell types in the organization of gene co-expression networks for ion channels and transmitter receptors.
Collapse
Affiliation(s)
- Virginia B Garcia
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Matthew D Abbinanti
- Department of Neurobiology and Behavior, Cornell University, Ithaca NY 14853, USA
| | | | - David J Schulz
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
7
|
Abstract
Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional properties of this facility in the path from synaptic sites to the motor axon is reviewed with emphasis on voltage sensitive ion channels and regulatory metabotropic transmitter pathways. The catalog of the intrinsic response properties, their underlying mechanisms, and regulation obtained from motoneurons in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems. © 2017 American Physiological Society. Compr Physiol 7:463-484, 2017.
Collapse
Affiliation(s)
- Jorn Hounsgaard
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
8
|
Claussen JC, Hofmann UG. Sleep, neuroengineering and dynamics. Cogn Neurodyn 2013; 6:211-4. [PMID: 23730352 DOI: 10.1007/s11571-012-9204-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 04/28/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022] Open
Abstract
Modeling of consciousness-related phenomena and neuroengineering are fields that are rapidly growing together. We review recent approaches and developments and point out some promising directions of future research: Understanding the dynamics of consciousness states and associated oscillations, pathological oscillations as well as their treatment by stimulation, neuroprosthetics and brain-computer-interface approaches, and stimulation approaches that probe, influence and strengthen memory consolidation. In all these fields, computational models connect theory, neurophysiology and neuroengineering research and pave a way towards medical applications.
Collapse
|