1
|
Hu F, Peng J, Wang W, Shen L, Jia M. Comparing the impact of various exercise modalities on old adults with Alzheimer's disease: A Bayesian network meta-analysis. Complement Ther Clin Pract 2025; 59:101968. [PMID: 40086298 DOI: 10.1016/j.ctcp.2025.101968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND AND PURPOSE The global prevalence of Alzheimer's disease (AD) in the elderly is rising, and exercise is increasingly used as a non-pharmacological intervention. However, the most effective exercise modality for improving quality of life, alleviating depression, and reducing neuropsychiatric symptoms in AD patients remains unclear. This study aims to identify the optimal exercise modality for addressing these symptoms through a network meta-analysis. METHODS As of November 2024, we conducted a comprehensive search across six databases: PubMed, Embase, Web of Science, the Cochrane Central Register of Controlled Trials, CINAHL, and PsycINFO. This study included only randomized controlled trials (RCTs), with study durations ranging from 2 to 24 weeks, primarily set in clinical or community environments. Following the PRISMA-NMA guidelines, we conducted statistical analysis using the "gemtc" package in R and assessed evidence quality via the CINeMA online platform. RESULTS A network meta-analysis of 29 RCTs with 1507 participants showed that for global cognition, Aerobic exercise (AE) [MD = 2.83, 95 % CI (0.66, 4.85)] ranked first with 79.5 % probability; for quality of daily life, Resistance Training (RT) [SMD = 0.96, 95 % CI (-0.14, 2.07)] ranked first with 83.7 %; for depression, Physical Activity Program (PAP) [SMD = -3.76, 95 % CI (-7.06, -0.47)] ranked first with 96.0 %; and for neuropsychiatric inventory outcomes, AE [SMD = -2.35, 95 % CI (-5.95, 1.06)] ranked first with 71.1 %. CONCLUSIONS Based on the findings from retrospective studies, aerobic exercise may be an effective intervention for improving overall cognition and quality of life in individuals aged 60 and above with Alzheimer's disease.
Collapse
Affiliation(s)
- Fengting Hu
- Department of Physical Education, Dong-A University, Busan, South Korea.
| | - Jin Peng
- Department of Physical Education, Dong-A University, Busan, South Korea.
| | - Weiran Wang
- Department of Physical Education, Dong-A University, Busan, South Korea.
| | - Lin Shen
- Faculty for Physical Education, Zhejiang Yuexiu University, Shaoxing, Zhejiang, China.
| | - Mingyuan Jia
- Department of Physical Education, Dong-A University, Busan, South Korea.
| |
Collapse
|
2
|
Zhang X, Zhu L, Li Y, Yu H, Wang T, Chu X. Therapeutic potential and mechanisms of repetitive transcranial magnetic stimulation in Alzheimer's disease: a literature review. Eur J Med Res 2025; 30:233. [PMID: 40186275 PMCID: PMC11969782 DOI: 10.1186/s40001-025-02493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/22/2025] [Indexed: 04/07/2025] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, affecting tens of millions worldwide with projections indicating increasing prevalence in coming decades. Characterized by progressive cognitive decline, AD manifests with varying degrees of executive, language, and visuospatial impairments that worsen over time, eventually leading to severe psychiatric symptoms, mobility difficulties, sleep disturbances, and incontinence. While pharmacological treatments remain the primary intervention approach, their efficacy often diminishes over time and may produce significant adverse effects. Repetitive transcranial magnetic stimulation (rTMS), as a non-invasive neuromodulation technique, has emerged as a promising alternative or complementary therapy. This literature review examines the therapeutic potential and mechanisms of rTMS in Alzheimer's disease. Through electromagnetic induction, rTMS can selectively modulate cortical excitability, with high-frequency stimulation (≥ 5 Hz) enhancing neural excitability and low-frequency stimulation (≤ 1 Hz) producing inhibitory effects. Recent clinical evidence demonstrates that rTMS can significantly improve cognitive function, memory, language abilities, and motor performance in AD patients, particularly when administered with optimized parameters targeting key brain regions, such as the dorsolateral prefrontal cortex. The neurobiological mechanisms underlying these effects include enhanced synaptic plasticity, increased expression of neurotrophic factors, modulation of neurotransmitter systems, and reduction of pathological protein aggregation. Meta-analyses indicate that high-frequency protocols (particularly 20 Hz) delivered over at least 3 weeks with a minimum of 20 sessions produce the most significant cognitive improvements, with effects potentially persisting for months post-treatment. Combined approaches integrating rTMS with cognitive training show particular promise through synergistic enhancement of neuroplasticity. Despite encouraging results, standardization of treatment protocols and larger clinical trials are needed to establish definitive guidelines and determine long-term efficacy. This review synthesizes current evidence supporting rTMS as an effective intervention for alleviating clinical symptoms of Alzheimer's disease while highlighting opportunities for advancing its therapeutic application.
Collapse
Grants
- 202,103,070,325 Shandong Medical and Health Technology Development Fund
- 202,103,070,325 Shandong Medical and Health Technology Development Fund
- M-2, 022,216 Shandong Province Traditional Chinese Medicine Science and Technology Project
- M-2, 022,216 Shandong Province Traditional Chinese Medicine Science and Technology Project
Collapse
Affiliation(s)
- Xinlei Zhang
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China
| | - Lingling Zhu
- Department of Pain Management, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, Shandong, China
| | - Yuan Li
- Department of Rehabilitation, Taian Maternal and Child Health Hospital, Taian, 271000, Shandong, China
| | - Hongna Yu
- Department of Rehabilitation, Taian Maternal and Child Health Hospital, Taian, 271000, Shandong, China
| | - Tao Wang
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China.
| | - Xiuli Chu
- Department of Neurology, Shanghai Sixth People'S Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Li D, Jia J, Zeng H, Zhong X, Chen H, Yi C. Efficacy of exercise rehabilitation for managing patients with Alzheimer's disease. Neural Regen Res 2024; 19:2175-2188. [PMID: 38488551 PMCID: PMC11034587 DOI: 10.4103/1673-5374.391308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/16/2023] [Accepted: 11/25/2023] [Indexed: 04/24/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive and degenerative neurological disease characterized by the deterioration of cognitive functions. While a definitive cure and optimal medication to impede disease progression are currently unavailable, a plethora of studies have highlighted the potential advantages of exercise rehabilitation for managing this condition. Those studies show that exercise rehabilitation can enhance cognitive function and improve the quality of life for individuals affected by AD. Therefore, exercise rehabilitation has been regarded as one of the most important strategies for managing patients with AD. Herein, we provide a comprehensive analysis of the currently available findings on exercise rehabilitation in patients with AD, with a focus on the exercise types which have shown efficacy when implemented alone or combined with other treatment methods, as well as the potential mechanisms underlying these positive effects. Specifically, we explain how exercise may improve the brain microenvironment and neuronal plasticity. In conclusion, exercise is a cost-effective intervention to enhance cognitive performance and improve quality of life in patients with mild to moderate cognitive dysfunction. Therefore, it can potentially become both a physical activity and a tailored intervention. This review may aid the development of more effective and individualized treatment strategies to address the challenges imposed by this debilitating disease, especially in low- and middle-income countries.
Collapse
Affiliation(s)
- Dan Li
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Jinning Jia
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Haibo Zeng
- Department of Pathology, Huichang County People’s Hospital, Ganzhou, Jiangxi Province, China
| | - Xiaoyan Zhong
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Chenju Yi
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China
| |
Collapse
|
4
|
Pagali SR, Kumar R, LeMahieu AM, Basso MR, Boeve BF, Croarkin PE, Geske JR, Hassett LC, Huston J, Kung S, Lundstrom BN, Petersen RC, St Louis EK, Welker KM, Worrell GA, Pascual-Leone A, Lapid MI. Efficacy and safety of transcranial magnetic stimulation on cognition in mild cognitive impairment, Alzheimer's disease, Alzheimer's disease-related dementias, and other cognitive disorders: a systematic review and meta-analysis. Int Psychogeriatr 2024; 36:880-928. [PMID: 38329083 PMCID: PMC11306417 DOI: 10.1017/s1041610224000085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVE We aim to analyze the efficacy and safety of TMS on cognition in mild cognitive impairment (MCI), Alzheimer's disease (AD), AD-related dementias, and nondementia conditions with comorbid cognitive impairment. DESIGN Systematic review, Meta-Analysis. SETTING We searched MEDLINE, Embase, Cochrane database, APA PsycINFO, Web of Science, and Scopus from January 1, 2000, to February 9, 2023. PARTICIPANTS AND INTERVENTIONS RCTs, open-label, and case series studies reporting cognitive outcomes following TMS intervention were included. MEASUREMENT Cognitive and safety outcomes were measured. Cochrane Risk of Bias for RCTs and MINORS (Methodological Index for Non-Randomized Studies) criteria were used to evaluate study quality. This study was registered with PROSPERO (CRD42022326423). RESULTS The systematic review included 143 studies (n = 5,800 participants) worldwide, encompassing 94 RCTs, 43 open-label prospective, 3 open-label retrospective, and 3 case series. The meta-analysis included 25 RCTs in MCI and AD. Collectively, these studies provide evidence of improved global and specific cognitive measures with TMS across diagnostic groups. Only 2 studies (among 143) reported 4 adverse events of seizures: 3 were deemed TMS unrelated and another resolved with coil repositioning. Meta-analysis showed large effect sizes on global cognition (Mini-Mental State Examination (SMD = 0.80 [0.26, 1.33], p = 0.003), Montreal Cognitive Assessment (SMD = 0.85 [0.26, 1.44], p = 0.005), Alzheimer's Disease Assessment Scale-Cognitive Subscale (SMD = -0.96 [-1.32, -0.60], p < 0.001)) in MCI and AD, although with significant heterogeneity. CONCLUSION The reviewed studies provide favorable evidence of improved cognition with TMS across all groups with cognitive impairment. TMS was safe and well tolerated with infrequent serious adverse events.
Collapse
Affiliation(s)
- Sandeep R Pagali
- Division of Hospital Internal Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Community Internal Medicine, Geriatrics, and Palliative Care, Mayo Clinic, Rochester, MN, USA
| | - Rakesh Kumar
- Department of Psychiatry and Psychology, Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Allison M LeMahieu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Michael R Basso
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Jennifer R Geske
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - John Huston
- Department of Radiology (Huston and Welker), Mayo Clinic, Rochester, MN, USA
| | - Simon Kung
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Kirk M Welker
- Department of Radiology (Huston and Welker), Mayo Clinic, Rochester, MN, USA
| | | | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna, Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Roslindale, MA, USA
- Department of Neurology, Harvard Medical School, Cambridge, MA, USA
| | - Maria I Lapid
- Division of Community Internal Medicine, Geriatrics, and Palliative Care, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Luo Q, Tian Z, Hu Y, Wang C. Effects of Aerobic Exercise on Executive and Memory Functions in Patients With Alzheimer's Disease: A Systematic Review. J Aging Phys Act 2024; 32:541-553. [PMID: 38521051 DOI: 10.1123/japa.2023-0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/05/2023] [Accepted: 01/20/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Alzheimer's disease threatens the health of older adults, particularly by disrupting executive and memory functions, and many studies have shown that aerobic exercise prevents and improves the symptoms associated with the disease. OBJECTIVE The objective was to systematically review the effects of aerobic exercise on executive and memory functions in patients with Alzheimer's disease and to determine the effect factors and mechanisms of the design of aerobic exercise intervention programs. METHOD Relevant literature was searched in three databases (PubMed, Web of Science, and EBSCO) from January 1, 2014 to March 1, 2023, using a subject-word search method. Data on 10 items, including author and country, were extracted from the literature after screening. The quality of the literature was evaluated using the Physiotherapy Evidence Database scale, and a systematic review was performed. RESULTS Twelve papers from seven countries were ultimately included, embodying 11 randomized controlled trials and one study with a repeated-measures design. The overall quality of the studies was good as 657 study participants, aged 45 years and older who had varying degrees of Alzheimer's disease and significant symptoms, were included. Aerobic exercise was found to have a significant positive impact on executive and memory functions in people with Alzheimer's disease. CONCLUSION The effects of aerobic exercise on aspects of executive function were mainly characterized by improvements in inhibitory control, working memory, and cognitive flexibility, whereas the effects on aspects of memory function were mainly characterized by improvements in logical memory, situational memory, and short-term memory.
Collapse
Affiliation(s)
- Qiaoyou Luo
- College of Physical Education, Hunan University, Changsha, HUN, China
| | - Zuguo Tian
- College of Physical Education, Hunan University, Changsha, HUN, China
| | - Yuting Hu
- College of Physical Education, Hunan University, Changsha, HUN, China
| | - Chaochao Wang
- College of Physical Education, Hunan University, Changsha, HUN, China
| |
Collapse
|
6
|
Zhu M, Huang S, Chen W, Pan G, Zhou Y. The effect of transcranial magnetic stimulation on cognitive function in post-stroke patients: a systematic review and meta-analysis. BMC Neurol 2024; 24:234. [PMID: 38969994 PMCID: PMC11225150 DOI: 10.1186/s12883-024-03726-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/12/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Transcranial magnetic stimulation (TMS) is considered as a promising treatment option for post-stroke cognitive impairment (PSCI).Some meta-analyses have indicated that TMS can be effective in treating cognitive decline in stroke patients, but the quality of the studies included and the methodologies employed were less than satisfactory. Thus, this meta-analysis aimed to evaluate the efficacy and safety of TMS for treating post-stroke cognitive impairment. METHODS We searched online databases like PubMed, Embase, Cochrane Library, and Web of Science to retrieve randomized controlled trials (RCTs) of TMS for the treatment of patients with PSCI. Two independent reviewers identified relevant literature, extracted purpose-specific data, and the Cochrane Risk of Bias Assessment Scale was utilized to assess the potential for bias in the literature included in this study. Stata 17.0 software was used for data analysis. RESULTS A total of 10 studies involving 414 patients were included. The results of the meta-analysis showed that TMS was significantly superior to the control group for improving the overall cognitive function of stroke patients (SMD = 1.17, 95% CI [0.59, 1.75], I2 = 86.1%, P < 0.001). Subgroup analyses revealed that high-frequency rTMS (HF-rTMS), low-frequency rTMS (LF-rTMS), and intermittent theta burst stimulation (iTBS) all have a beneficial effect on the overall cognitive function of stroke patients. However, another subgroup analysis failed to demonstrate any significant advantage of TMS over the control group in terms of enhancing scores on the Loewenstein Occupational Therapy Cognitive Assessment (LOTCA) and Rivermead Behavioral Memory Test (RBMT) scales. Nonetheless, TMS demonstrated the potential to enhance the recovery of activities of daily living in stroke patients, as indicated by the Modified Barthel Index (MBI) (SMD = 0.76; 95% CI [0.22, 1.30], I2 = 52.6%, P = 0.121). CONCLUSION This meta-analysis presents evidence supporting the safety and efficacy of TMS as a non-invasive neural modulation tool for improving global cognitive abilities and activities of daily living in stroke patients. However, given the limited number of included studies, further validation of these findings is warranted through large-scale, multi-center, double-blind, high-quality randomized controlled trials. PROSPERO REGISTRATION NUMBER CRD42022381034.
Collapse
Affiliation(s)
- Mingjin Zhu
- Department of Rehabilitation Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Siyu Huang
- Graduate School, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenjun Chen
- Department of Pharmacy, Xixi Hospital of Hangzhou, Hangzhou, 310023, China
| | - Guoyuan Pan
- Department of Rehabilitation Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yibo Zhou
- Department of Rehabilitation Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
7
|
Li S, Lan X, Liu Y, Zhou J, Pei Z, Su X, Guo Y. Unlocking the Potential of Repetitive Transcranial Magnetic Stimulation in Alzheimer's Disease: A Meta-Analysis of Randomized Clinical Trials to Optimize Intervention Strategies. J Alzheimers Dis 2024; 98:481-503. [PMID: 38427480 PMCID: PMC10977421 DOI: 10.3233/jad-231031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 03/03/2024]
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) is an advanced and noninvasive technology that uses pulse stimulation to treat cognitive impairment. However, its specific effects have always been mixed with those of cognitive training, and the optimal parameter for Alzheimer's disease (AD) intervention is still ambiguous. Objective This study aimed to summarize the therapeutic effects of pure rTMS on AD, excluding the influence of cognitive training, and to develop a preliminary rTMS treatment plan. Methods Between 1 January 2010 and 28 February 2023, we screened randomized controlled clinical trials from five databases (PubMed, Web of Science, Embase, Cochrane, and ClinicalTrials. gov). We conducted a meta-analysis and systematic review of treatment outcomes and rTMS treatment parameters. Result A total of 4,606 articles were retrieved. After applying the inclusion and exclusion criteria, 16 articles, comprising 655 participants (308 males and 337 females), were included in the final analysis. The findings revealed that rTMS significantly enhances both global cognitive ability (p = 0.0002, SMD = 0.43, 95% CI = 0.20-0.66) and memory (p = 0.009, SMD = 0.37, 95% CI = 0.09-0.65). Based on follow-up periods of at least 6 weeks, the following stimulation protocols have demonstrated efficacy for AD: stimulation sites (single or multiple targets), frequency (20 Hz), stimulation time (1-2 s), interval (20-30 s), single pulses (≤2500), total pulses (>20000), duration (≥3 weeks), and sessions (≥20). Conclusions This study suggests that rTMS may be an effective treatment option for patients with AD, and its potential therapeutic capabilities should be further developed in the future.
Collapse
Affiliation(s)
- Sha Li
- Institute of Neurological and Psychiatric Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xiaoyong Lan
- Institute of Neurological and Psychiatric Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Yumei Liu
- Institute of Neurological and Psychiatric Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Junhong Zhou
- Hebrew Seniorlife Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, USA
| | - Zian Pei
- Institute of Neurological and Psychiatric Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xiaolin Su
- Department of Neurology, Shenzhen People’s Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, China
| | - Yi Guo
- Institute of Neurological and Psychiatric Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Department of Neurology, Shenzhen People’s Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Xiu H, Liu F, Hou Y, Chen X, Tu S. High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) on global cognitive function of elderly in mild to moderate Alzheimer's disease: a systematic review and meta-analysis. Neurol Sci 2024; 45:13-25. [PMID: 37749398 DOI: 10.1007/s10072-023-07072-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/10/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVE High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) is a non-invasive brain stimulation technique used to improve cognitive deficits in patients with Alzheimer's disease (AD). This systematic review and meta-analysis aimed to evaluate the efficacy of HF-rTMS in improving global cognitive function rehabilitation in elderly patients with mild to moderate AD. METHODS A detailed literature search of publications using ten databases (Chinese: Wanfang, VIP Periodical, SinoMed, the Chinese National Knowledge Infrastructure; English: PubMed, Embase, OVID, Web of Science, Cochrane Library, and EBSCOhost) was performed to identify English and Chinese language articles published up to December 2022. We only included randomized controlled trials (RCTs) that evaluate the effect of HF-rTMS on elderly patients with mild to moderate AD. The retrieved studies were carefully reviewed, extracted data, and assessed quality. RESULTS Seventeen studies, including 1161 elderly patients with mild to moderate AD, were included in this meta-analysis. Compared to the control group, HF-rTMS could increase MMSE (mean difference [MD] = 3.64; 95%CI 1.86-5.42; P < 0.0001), MoCA (MD = 3.69; 95%CI 1.84-5.54; P < 0.0001), P300 amplitude (MD = 1.09; 95%CI 0.45-1.72; P = 0.0008), and total effective rate scores (MD = 3.64; 95% CI 2.14-6.18; P < 0.00001) while decreasing ADAS-Cog (MD = - 3.53; 95%CI - 4.91- - 2.15; P < 0.00001) and P300 latency scores (MD = - 38.32; 95%CI - 72.40- - 4.24; P = 0.03). Our study showed that HF-rTMS could improve the global cognitive function of elderly patients with mild to moderate AD. CONCLUSION HF-rTMS can improve global cognitive function in elderly patients with mild to moderate AD, which is an effective and safe rehabilitation treatment tool for AD patients.
Collapse
Affiliation(s)
- Huoqin Xiu
- Nursing College, Fujian University of Traditional Chinese Medicine, No.1 Qiu Yang Road, Shangjie, Minhou, Fuzhou, 350122, Fujian, China
| | - Fang Liu
- Nursing College, Fujian University of Traditional Chinese Medicine, No.1 Qiu Yang Road, Shangjie, Minhou, Fuzhou, 350122, Fujian, China.
| | - Yufei Hou
- Nursing College, Fujian University of Traditional Chinese Medicine, No.1 Qiu Yang Road, Shangjie, Minhou, Fuzhou, 350122, Fujian, China
| | - Xin Chen
- Nursing College, Fujian University of Traditional Chinese Medicine, No.1 Qiu Yang Road, Shangjie, Minhou, Fuzhou, 350122, Fujian, China
| | - Shuzhen Tu
- Nursing College, Fujian University of Traditional Chinese Medicine, No.1 Qiu Yang Road, Shangjie, Minhou, Fuzhou, 350122, Fujian, China
| |
Collapse
|
9
|
Hajebrahimi F, Budak M, Saricaoglu M, Temel Z, Demir TK, Hanoglu L, Yildirim S, Bayraktaroglu Z. Functional neural networks stratify Parkinson's disease patients across the spectrum of cognitive impairment. Brain Behav 2024; 14:e3395. [PMID: 38376051 PMCID: PMC10808882 DOI: 10.1002/brb3.3395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/23/2023] [Accepted: 12/26/2023] [Indexed: 02/21/2024] Open
Abstract
INTRODUCTION Cognitive impairment (CI) is a significant non-motor symptoms in Parkinson's disease (PD) that often precedes the emergence of motor symptoms by several years. Patients with PD hypothetically progress from stages without CI (PD-normal cognition [NC]) to stages with Mild CI (PD-MCI) and PD dementia (PDD). CI symptoms in PD are linked to different brain regions and neural pathways, in addition to being the result of dysfunctional subcortical regions. However, it is still unknown how functional dysregulation correlates to progression during the CI. Neuroimaging techniques hold promise in discriminating CI stages of PD and further contribute to the biomarker formation of CI in PD. In this study, we explore disparities in the clinical assessments and resting-state functional connectivity (FC) among three CI stages of PD. METHODS We enrolled 88 patients with PD and 26 healthy controls (HC) for a cross sectional clinical study and performed intra- and inter-network FC analysis in conjunction with comprehensive clinical cognitive assessment. RESULTS Our findings underscore the significance of several neural networks, namely, the default mode network (DMN), frontoparietal network (FPN), dorsal attention network, and visual network (VN) and their inter-intra-network FC in differentiating between PD-MCI and PDD. Additionally, our results showed the importance of sensory motor network, VN, DMN, and salience network (SN) in the discriminating PD-NC from PDD. Finally, in comparison to HC, we found DMN, FPN, VN, and SN as pivotal networks for further differential diagnosis of CI stages of PD. CONCLUSION We propose that resting-state networks (RSN) can be a discriminating factor in distinguishing the CI stages of PD and progressing from PD-NC to MCI or PDD. The integration of clinical and neuroimaging data may enhance the early detection of PD in clinical settings and potentially prevent the disease from advancing to more severe stages.
Collapse
Affiliation(s)
- Farzin Hajebrahimi
- Functional Imaging and Cognitive‐Affective Neuroscience Lab (fINCAN), Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
- Department of Physical Therapy and Rehabilitation, School of Health SciencesIstanbul Medipol UniversityIstanbulTurkey
- Department of Health Informatics, Rutgers University, School of Health ProfessionsRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Miray Budak
- Functional Imaging and Cognitive‐Affective Neuroscience Lab (fINCAN), Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
- Department of Ergotherapy, School of Health SciencesIstanbul Medipol UniversityIstanbulTurkey
- Center for Molecular and Behavioral NeuroscienceRutgers University‐NewarkNewarkNew JerseyUSA
| | - Mevhibe Saricaoglu
- Functional Imaging and Cognitive‐Affective Neuroscience Lab (fINCAN), Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
- Program of Electroneurophysiology, Vocational SchoolIstanbul Medipol UniversityIstanbulTurkey
| | - Zeynep Temel
- Department of PsychologyFatih Sultan Mehmet Vakif UniversityIstanbulTurkey
| | - Tugce Kahraman Demir
- Program of Electroneurophysiology, Vocational SchoolBiruni UniversityIstanbulTurkey
| | - Lutfu Hanoglu
- Department of Neurology, School of MedicineIstanbul Medipol UniversityIstanbulTurkey
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
| | - Suleyman Yildirim
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
- Department of Medical Microbiology, International School of MedicineIstanbul Medipol UniversityIstanbulTurkey
| | - Zubeyir Bayraktaroglu
- Functional Imaging and Cognitive‐Affective Neuroscience Lab (fINCAN), Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
- Department of Physiology, International School of MedicineIstanbul Medipol UniversityIstanbulTurkey
| |
Collapse
|
10
|
Wang T, Yan S, Lu J. The effects of noninvasive brain stimulation on cognitive function in patients with mild cognitive impairment and Alzheimer's disease using resting-state functional magnetic resonance imaging: A systematic review and meta-analysis. CNS Neurosci Ther 2023; 29:3160-3172. [PMID: 37349974 PMCID: PMC10580344 DOI: 10.1111/cns.14314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
OBJECTIVE The aim of this systematic review and meta-analysis was to evaluate the efficacy of noninvasive brain stimulation (NIBS) on cognition using functional magnetic resonance imaging (fMRI) in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD), thus providing the neuroimaging mechanism of cognitive intervention. METHODS English articles published up to April 30, 2023 were searched in the PubMed, Web of Science, Embase, and Cochrane Library databases. We included randomized controlled trials where resting-state fMRI was used to observe the effect of NIBS in patients with MCI or AD. RevMan software was used to analyze the continuous variables, and SDM-PSI software was used to perform an fMRI data analysis. RESULTS A total of 17 studies comprising 258 patients in the treatment group and 256 in the control group were included. After NIBS, MCI patients in the treatment group showed hyperactivation in the right precuneus and decreased activity in the left cuneus and right supplementary motor area. In contrast, patients in the control group showed decreased activity in the right middle frontal gyrus and no hyperactivation. The clinical cognitive scores in MCI patients were significantly improved by NIBS, while not in AD. Some evidence regarding the modulation of NIBS in resting-state brain activity and functional brain networks in patients with AD was found. CONCLUSIONS NIBS could improve cognitive function in patients with MCI and AD. fMRI evaluations could be added to evaluate the contribution of specific NIBS treatment therapeutic effectiveness.
Collapse
Affiliation(s)
- Tao Wang
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| | - Shaozhen Yan
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| |
Collapse
|