1
|
Marlier Q, D'aes T, Verteneuil S, Vandenbosch R, Malgrange B. Core cell cycle machinery is crucially involved in both life and death of post-mitotic neurons. Cell Mol Life Sci 2020; 77:4553-4571. [PMID: 32476056 PMCID: PMC11105064 DOI: 10.1007/s00018-020-03548-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/23/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
A persistent dogma in neuroscience supported the idea that terminally differentiated neurons permanently withdraw from the cell cycle. However, since the late 1990s, several studies have shown that cell cycle proteins are expressed in post-mitotic neurons under physiological conditions, indicating that the cell cycle machinery is not restricted to proliferating cells. Moreover, many studies have highlighted a clear link between cell cycle-related proteins and neurological disorders, particularly relating to apoptosis-induced neuronal death. Indeed, cell cycle-related proteins can be upregulated or overactivated in post-mitotic neurons in case of acute or degenerative central nervous system disease. Given the considerable lack of effective treatments for age-related neurological disorders, new therapeutic approaches targeting the cell cycle machinery might thus be considered. This review aims at summarizing current knowledge about the role of the cell cycle machinery in post-mitotic neurons in healthy and pathological conditions.
Collapse
Affiliation(s)
- Quentin Marlier
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Tine D'aes
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Sébastien Verteneuil
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Renaud Vandenbosch
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium.
| |
Collapse
|
2
|
Marlier Q, Jibassia F, Verteneuil S, Linden J, Kaldis P, Meijer L, Nguyen L, Vandenbosch R, Malgrange B. Genetic and pharmacological inhibition of Cdk1 provides neuroprotection towards ischemic neuronal death. Cell Death Discov 2018; 4:43. [PMID: 29581894 PMCID: PMC5856839 DOI: 10.1038/s41420-018-0044-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/24/2018] [Indexed: 01/16/2023] Open
Abstract
Cell cycle proteins are mainly expressed by dividing cells. However, it is well established that these molecules play additional non-canonical activities in several cell death contexts. Increasing evidence shows expression of cell cycle regulating proteins in post-mitotic cells, including mature neurons, following neuronal insult. Several cyclin-dependent kinases (Cdks) have already been shown to mediate ischemic neuronal death but Cdk1, a major cell cycle G2/M regulator, has not been investigated in this context. We therefore examined the role of Cdk1 in neuronal cell death following cerebral ischemia, using both in vitro and in vivo genetic and pharmacological approaches. Exposure of primary cortical neurons cultures to 4 h of oxygen–glucose deprivation (OGD) resulted in neuronal cell death and induced Cdk1 expression. Neurons from Cdk1-cKO mice showed partial resistance to OGD-induced neuronal cell death. Addition of R-roscovitine to the culture medium conferred neuroprotection against OGD-induced neuronal death. Transient 1-h occlusion of the cerebral artery (MCAO) also leads to Cdk1 expression and activation. Cdk1-cKO mice displayed partial resistance to transient 1-h MCAO. Moreover, systemic delivery of R-roscovitine was neuroprotective following transient 1-h MCAO. This study demonstrates that promising neuroprotective therapies can be considered through inhibition of the cell cycle machinery and particularly through pharmacological inhibition of Cdk1.
Collapse
Affiliation(s)
- Quentin Marlier
- 1Laboratory of Developmental Neurobiology, GIGA-Neurosciences, University of Liège, C.H.U. B36, 4000 Liège, Belgium
| | - Florian Jibassia
- 1Laboratory of Developmental Neurobiology, GIGA-Neurosciences, University of Liège, C.H.U. B36, 4000 Liège, Belgium
| | - Sébastien Verteneuil
- 1Laboratory of Developmental Neurobiology, GIGA-Neurosciences, University of Liège, C.H.U. B36, 4000 Liège, Belgium
| | - Jérôme Linden
- 2Department of Psychology, University of Liege, B32, 4000 Liège, Belgium
| | - Philipp Kaldis
- 3Institute of Molecular and Cell Biology (IMCB), ASTAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos#3-09, Singapore, 138673 Republic of Singapore.,4Department of Biochemistry, National University of Singapore (NUS), Singapore, 117597 Republic of Singapore
| | - Laurent Meijer
- ManRos Therapeutics, Centre de Perharidy, 29680 Roscoff, France
| | - Laurent Nguyen
- 6Laboratory of Molecular Regulation of Neurogenesis, GIGA-Neurosciences, University of Liège, C.H.U. B36, 4000 Liège, Belgium
| | - Renaud Vandenbosch
- 1Laboratory of Developmental Neurobiology, GIGA-Neurosciences, University of Liège, C.H.U. B36, 4000 Liège, Belgium
| | - Brigitte Malgrange
- 1Laboratory of Developmental Neurobiology, GIGA-Neurosciences, University of Liège, C.H.U. B36, 4000 Liège, Belgium
| |
Collapse
|
3
|
Up-Regulation of CCT8 Related to Neuronal Apoptosis after Traumatic Brain Injury in Adult Rats. Neurochem Res 2015; 40:1882-91. [DOI: 10.1007/s11064-015-1683-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/20/2015] [Accepted: 07/23/2015] [Indexed: 12/21/2022]
|
4
|
Wang Y, Shyam N, Ting JH, Akay C, Lindl KA, Jordan-Sciutto KL. E2F1 localizes predominantly to neuronal cytoplasm and fails to induce expression of its transcriptional targets in human immunodeficiency virus-induced neuronal damage. Neurosci Lett 2010; 479:97-101. [PMID: 20580656 PMCID: PMC2902623 DOI: 10.1016/j.neulet.2010.05.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/25/2010] [Accepted: 05/10/2010] [Indexed: 12/21/2022]
Abstract
As human immunodeficiency virus (HIV) does not induce neuronal damage by direct infection, the mechanisms of neuronal damage or loss in HIV-associated dementia (HAD) remain unclear. We have shown previously that immunoreactivity of transcription factor, E2F1, increases in neurons, localizing predominantly to the cytoplasm, in HIV-associated pathologies. Here we confirm that E2F1 localization is predominantly cytoplasmic in primary postmitotic neurons in vitro and cortical neurons in vivo. To determine whether E2F1 contributes to neuronal death in HAD via transactivation of target promoters, we assessed the mRNA and protein levels of several classical E2F1 transcriptional targets implicated in cell cycle progression and apoptosis in an in vitro model of HIV-induced neurotoxicity and in cortical autopsy tissue from patients infected with HIV. By Q-PCR, we show that mRNA levels of E2F1 transcriptional targets implicated in cell cycle progression (E2F1, Cyclin A, proliferating cell nuclear antigen (PCNA), and dyhydrofolate reductase (DHFR)) and apoptosis (caspases 3, 8, 9 and p19(ARF)) remain unchanged in an in vitro model of HIV-induced neurotoxicity. Further, we show that protein levels of p19(ARF), Cyclin A, and PCNA are not altered in vitro or in the cortex of patients with HAD. We propose that the predominantly cytoplasmic localization of E2F1 in neurons may account for the lack of E2F1 target transactivation in neurons responding to HIV-induced neurotoxicity.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia PA 19104, U.S.A
| | - Nikhil Shyam
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia PA 19104, U.S.A
| | - Jenhao H. Ting
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia PA 19104, U.S.A
| | - Cagla Akay
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia PA 19104, U.S.A
| | - Kathryn A. Lindl
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia PA 19104, U.S.A
| | - Kelly L. Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia PA 19104, U.S.A
| |
Collapse
|
5
|
The involvement of upregulation and translocation of phospho-Rb in early neuronal apoptosis following focal cerebral ischemia in rats. Neurochem Res 2009; 34:1113-9. [PMID: 19123049 DOI: 10.1007/s11064-008-9887-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2008] [Indexed: 10/21/2022]
Abstract
The aim of this study was to investigate the temporal and spatial relationship between phospho-Rb (ser 795) and neuronal apoptotic death in rats subjected to transient focal cerebral ischemia. We found increased phosphorylation of Rb and translocation from neuronal nucleus to cytoplasm in the penumbra zone at 12 h, 1 day, 3 days and 7 days after middle cerebral artery occlusion (MCAO)/reperfusion, compared with sham-operated controls. At 12 h and 1 day, phospho-Rb appeared to be colocalizated with TUNEL staining in neurons, but staining was not colocalizated at 3 days and 7 days. These results demonstrated that cytoplasmic translocation of phospho-Rb from nucleus of neurons occurs in potential apoptotic neurons in the early stages of ischemia/reperfusion, suggesting that the Rb pathway may only be involved in early neuronal apoptosis and may be not an apoptotic signal in the late stages of transient cerebral ischemia.
Collapse
|