1
|
Molecular Cloning and Characterization of SYCP3 and TSEG2 Genes in the Testicles of Sexually Mature and Immature Yak. Genes (Basel) 2019; 10:genes10110867. [PMID: 31671664 PMCID: PMC6896015 DOI: 10.3390/genes10110867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 11/17/2022] Open
Abstract
Testis-specific genes play an essential part in the centromere union during meiosis in male germ cells, spermatogenesis, and in fertility. Previously, there was no research report available on the expression pattern of SYCP3 and TSEG2 genes in different ages of yaks. Therefore, the current research compared the expression profiling of SYCP3 and TSEG2 genes in testes of yaks. The expression pattern of SYCP3 and TSEG2 mRNA was investigated using qPCR, semi-quantitative PCR, western blot, immunohistochemistry, and molecular bioinformatics. Our findings displayed that SYCP3 and TSEG2 genes were prominently expressed in the testicles of yaks as compared to other organs. On the other hand, the protein encoded by yak SYCP3 contains Cor1/Xlr/Xmr conserved regions, while the protein encoded by yak TSEG2 contains synaptonemal complex central element protein 3. Additionally, multiple alignments sequences indicated that proteins encoded by Datong yak SYCP3 and TSEG2 were highly conserved among mammals. Moreover, western blot analysis specified that the molecular mass of SYCP3 protein was 34-kDa and TSEG2 protein 90-kDa in the yak. Furthermore, the results of immunohistochemistry also revealed the prominent expression of these proteins in the testis of mature yaks, which indicated that SYCP3 and TSEG2 might be essential for spermatogenesis, induction of central element assembly, and homologous recombination.
Collapse
|
2
|
Zhang X, Wang K, Wang L, Yang Y, Ni Z, Xie X, Shao X, Han J, Wan D, Qiu Q. Genome-wide patterns of copy number variation in the Chinese yak genome. BMC Genomics 2016; 17:379. [PMID: 27206476 PMCID: PMC4875690 DOI: 10.1186/s12864-016-2702-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/06/2016] [Indexed: 12/02/2022] Open
Abstract
Background Copy number variation (CNV) represents an important source of genetic divergence that can produce drastic phenotypic differences and may therefore be subject to selection during domestication and environmental adaptation. To investigate the evolutionary dynamics of CNV in the yak genome, we used a read depth approach to detect CNV based on genome resequencing data from 14 wild and 65 domestic yaks and determined CNV regions related to domestication and adaptations to high-altitude. Results We identified 2,634 CNV regions (CNVRs) comprising a total of 153 megabases (5.7 % of the yak genome) and 3,879 overlapping annotated genes. Comparison between domestic and wild yak populations identified 121 potentially selected CNVRs, harboring genes related to neuronal development, reproduction, nutrition and energy metabolism. In addition, we found 85 CNVRs that are significantly different between domestic yak living in high- and low-altitude areas, including three genes related to hypoxia response and six related to immune defense. This analysis shows that genic CNVs may play an important role in phenotypic changes during yak domestication and adaptation to life at high-altitude. Conclusions We present the first refined CNV map for yak along with comprehensive genomic analysis of yak CNV. Our results provide new insights into the genetic basis of yak domestication and adaptation to living in a high-altitude environment, as well as a valuable genetic resource that will facilitate future CNV association studies of important traits in yak and other bovid species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2702-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Kun Wang
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Lizhong Wang
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Zhengqiang Ni
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Xiuyue Xie
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Xuemin Shao
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Jin Han
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Dongshi Wan
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China.
| | - Qiang Qiu
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|