1
|
Liao L, Xiao Y, Xing X, Wang X, Zhou J, Li W, Pan S, Xu N, Jiang R. Tanshinone IIA Improves Intestinal Barrier Integrity in Septic Rats. Surg Infect (Larchmt) 2025. [PMID: 40267092 DOI: 10.1089/sur.2025.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Aims: The present work aimed to examine impact of tanshinone IIA on intestinal barrier in sepsis and to explore the underpinning mechanisms. Materials and Methods: Sepsis induction in Sprague-Dawley (SD) rats was conducted via cecal ligation and puncture (CLP), with subsequent intraperitoneal injection of tanshinone IIA. Intestinal permeability was examined 12 h post-operation using the fluorescein isothiocyanate dextran method. Blood and distal ileum tissue samples were collected for Enzyme-Linked Immunosorbent Assay (ELISA) analysis of oxidative stress and inflammatory markers. Histopathologic examination was performed using hematoxylin and eosin staining and the Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) assay. Immunofluorescence and immunoblot were performed for protein detection. In vitro, Caco-2 cells were administered lipopolysaccharide (LPS) followed by tanshinone IIA treatment, and pregnane X receptor (PXR) and cytochrome P450-3A4 (CYP3A4) protein levels were assessed. Results: In sepsis model rats, tanshinone IIA dose-dependently reversed the increased intestinal permeability, bacterial shift rate, ileum Chiu's score, apoptosis level of ileal mucosa, the elevated serum and ileal Malondialdehyde (MDA), Interleukin-1 beta (IL-1β), and Tumor Necrosis Factor-alpha (TNF-α) amounts, and the enhanced ileal expression levels of Proto-oncogene c-Fos (c-Fos) and tryptase proteins. In addition, tanshinone IIA restored the decreased serum and ileal Superoxide Dismutase (SOD) levels and reversed the reduced ileal expression levels of claudin-1, Junctional Adhesion Molecule (JAM), occludin, and ZO-1. In vitro, tanshinone IIA restored PXR and CYP3A4 levels following LPS stimulation. Conclusion: Tanshinone IIA exerts a protective effect in murine CLP-induced sepsis. The underlying mechanism may involve activation of the PXR-CYP3A4 pathway in murine intestinal epithelial cells.
Collapse
Affiliation(s)
| | - Yiying Xiao
- ICU, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xi Xing
- ICU, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xi Wang
- ICU, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianming Zhou
- ICU, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenjing Li
- ICU, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Sixu Pan
- ICU, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Nafei Xu
- ICU, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ronglin Jiang
- ICU, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Xu J, Zhang P, Chen Y, Xu Y, Luan P, Zhu Y, Zhang J. Sodium tanshinone IIA sulfonate ameliorates cerebral ischemic injury through regulation of angiogenesis. Exp Ther Med 2021; 22:1122. [PMID: 34504576 PMCID: PMC8383733 DOI: 10.3892/etm.2021.10556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
Vascular remodeling and neuroprotection are two major adaptable methods for treating ischemic stroke. Edaravone is a protective agent for the treatment of stroke and was used as a positive control in the present study. Sodium tanshinone IIA sulfonate (STS) has demonstrated therapeutic clinical effects in cerebral infarction in China, while its mechanisms of action in ischemic stroke have remained elusive. The angiogenesis and neuroprotective effects of STS were evaluated in a rat model induced by middle cerebral artery occlusion and 3 days of reperfusion. When used at the same dose, the magnitude of the therapeutic effect of STS was similar to that of edaravone in terms of decreased blood-brain barrier damage as indicated by reduced Evans blue leakage, improved neurological deficits, alleviated cerebral edema and inhibition of histopathological changes caused by ischemia/reperfusion. The TUNEL assay demonstrated that the ability of STS to inhibit neuronal apoptosis was equivalent to that of edaravone. Immunofluorescence detection of CD31 and α-smooth muscle actin indicated that the vascular density was significantly reduced in the vehicle group compared with that in the sham operation group, STS increased the microvessel density in the ischemic area. Furthermore, in the vehicle group the protein expression of vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR) as determined by fluorescence microscopy and immunohistochemistry was significantly reduced compared with that in the sham group. However, STS promoted their expression compared to the vehicle group respectively, and increaed the mRNA expression of VEGF, VEGFR, CD31 and angiopoietin-1 as determined by reverse transcription-quantitative PCR, but these changes were not significant or not present for edaravone apart from Ang-1. In conclusion, STS protected against ischemic brain injury by promoting angiogenesis in ischemic areas and inhibiting neuronal apoptosis. These results provide a potential treatment for stroke recovery.
Collapse
Affiliation(s)
- Jiazhen Xu
- Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Pei Zhang
- Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yao Chen
- Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yulan Xu
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Pengwei Luan
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yuying Zhu
- Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jiange Zhang
- Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
3
|
XU Z, YIN N, REN R, RUAN Z. In silico analysis based on constituents of the medicinal plant Xuebijing (XBJ) to identify candidate treatment agents for sepsis in the omics-driven research era. MINERVA BIOTECNOL 2021. [DOI: 10.23736/s1120-4826.20.02684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Zhou ZY, Zhao WR, Zhang J, Chen XL, Tang JY. Sodium tanshinone IIA sulfonate: A review of pharmacological activity and pharmacokinetics. Biomed Pharmacother 2019; 118:109362. [PMID: 31545252 DOI: 10.1016/j.biopha.2019.109362] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 02/08/2023] Open
Abstract
Sodium tanshinone IIA sulfonate (STS) is a water-soluble derivate of tanshinone IIA (Tan IIA) which is an active lipophilic constitute of Chinese Materia Medica Salvia miltiorrhiza Bge. (Danshen). STS presents multiple pharmacological activities, including anti-oxidant, anti-inflammation and anti-apoptosis, and has been approved for treatment of cardiovascular diseases by China State Food and Drug Administration (CFDA). In this review, we comprehensively summarized the pharmacological activities and pharmacokinetics of STS, which could support the further application and development of STS. In the recent decades, numerous experimental and clinical studies have been conducted to investigate the potential treatment effects of STS in various diseases, such as heart diseases, brain diseases, pulmonary diseases, cancers, sepsis and so on. The underlying mechanisms were most related to anti-oxidative and anti-inflammatory effects of STS via regulating various transcription factors, such as NF-κB, Nrf2, Stat1/3, Smad2/3, Hif-1α and β-catenin. Iron channels, including Ca2+, K+ and Cl- channels, were also the important targets of STS. Additionally, we emphasized the differences between STS and Tan IIA despite the interchangeable use of Tan IIA and STS in many previous studies. It is promising to improve the efficacy and reduce side effects of chemotherapeutic drug by the combination use of STS in canner treatment. The application of STS in pregnancy needs to be seriously considered. Moreover, the drug-drug interactions between STS and other drugs needs to be further studied as well as the complications of STS.
Collapse
Affiliation(s)
- Zhong-Yan Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Wai-Rong Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Cardiac Rehabilitation Center of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jing Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xin-Lin Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jing-Yi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Cardiac Rehabilitation Center of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
5
|
Haussner F, Chakraborty S, Halbgebauer R, Huber-Lang M. Challenge to the Intestinal Mucosa During Sepsis. Front Immunol 2019; 10:891. [PMID: 31114571 PMCID: PMC6502990 DOI: 10.3389/fimmu.2019.00891] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a complex of life-threating organ dysfunction in critically ill patients, with a primary infectious cause or through secondary infection of damaged tissues. The systemic consequences of sepsis have been intensively examined and evidences of local alterations and repercussions in the intestinal mucosal compartment is gradually defining gut-associated changes during sepsis. In the present review, we focus on sepsis-induced dysfunction of the intestinal barrier, consisting of an increased permeability of the epithelial lining, which may facilitate bacterial translocation. We discuss disturbances in intestinal vascular tonus and perfusion and coagulopathies with respect to their proposed underlying molecular mechanisms. The consequences of enzymatic responses by pancreatic proteases, intestinal alkaline phosphatases, and several matrix metalloproteases are also described. We conclude our insight with a discussion on novel therapeutic interventions derived from crucial aspects of the gut mucosal dynamics during sepsis.
Collapse
Affiliation(s)
- Felix Haussner
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Shinjini Chakraborty
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
6
|
Zhu W, Lu Q, Wan L, Feng J, Chen HW. Sodium tanshinone II A sulfonate ameliorates microcirculatory disturbance of small intestine by attenuating the production of reactie oxygen species in rats with sepsis. Chin J Integr Med 2015; 22:745-51. [DOI: 10.1007/s11655-015-2083-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Indexed: 10/23/2022]
|
7
|
Impurities preparation of sodium tanshinone IIA sulfonate by high-speed counter-current chromatography and identification by liquid chromatography/multistage tandem mass spectrometry. J Chromatogr A 2013; 1288:28-34. [DOI: 10.1016/j.chroma.2013.02.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/16/2013] [Accepted: 02/18/2013] [Indexed: 01/22/2023]
|