1
|
Qin X, Gao A, Hou X, Xu X, Chen L, Sun L, Hao Y, Shi Y. Connexins may play a critical role in cigarette smoke-induced pulmonary hypertension. Arch Toxicol 2022; 96:1609-1621. [PMID: 35344070 DOI: 10.1007/s00204-022-03274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 11/02/2022]
Abstract
Pulmonary hypertension (PH) is a chronic progressive disease characterized by pulmonary vasoconstriction and remodeling. It causes a gradual increase in pulmonary vascular resistance leading to right-sided heart failure, and may be fatal. Chronic exposure to cigarette smoke (CS) is an essential risk factor for PH group 3; however, smoking continues to be prevalent and smoking cessation is reported to be difficult. A majority of smokers exhibit PH, which leads to a concomitant increase in the risk of mortality. The current treatments for PH group 3 focus on vasodilation and long-term oxygen supplementation, and fail to stop or reverse PH-associated continuous vascular remodeling. Recent studies have suggested that pulmonary vascular endothelial dysfunction induced by CS exposure may be an initial event in the natural history of PH, which in turn may be associated with abnormal alterations in connexin (Cx) expression. The relationship between Cx and CS-induced PH development has not yet been directly investigated. Therefore, this review will describe the roles of CS and Cx in the development of PH and discuss the related downstream pathways. We also discuss the possible role of Cx in CS-induced PH. It is hoped that this review may provide new perspectives for early intervention.
Collapse
Affiliation(s)
- Xiaojiang Qin
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.
- China Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.
| | - Anqi Gao
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Xiaomin Hou
- Department of Pharmacology, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
- China Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Xinrong Xu
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Liangjin Chen
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Lin Sun
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Yuxuan Hao
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Yiwei Shi
- Department of Respiratory and Critical Care Medicine, Shanxi Medical University Affiliated First Hospital, 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
2
|
Zeng M, Chen S, Li H, Huang Z, Wu D, Pan Y, Deng C. The role of β-catenin in pulmonary artery endothelial-mesenchymal transformation in rats with chronic thromboembolic pulmonary hypertension. J Thromb Thrombolysis 2021; 52:454-465. [PMID: 33655472 DOI: 10.1007/s11239-020-02356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
β-catenin and endothelial mesenchymal transformation play an important role in the formation of pulmonary hypertension. To explore the role of β-catenin in chronic thromboembolic pulmonary hypertension (CTEPH), we first established a rat model of CTEPH by repeated autologous thromboembolization and then treated these rats with a β-catenin specific inhibitor, XAV939, for two or four weeks. We further examined the expression of β-catenin, α-SMA and CD31, mean pulmonary artery pressure (mPAP), and histopathology in the pulmonary artery, and analyzed their correlation. In the thrombus group without treatment of the inhibitor, the expression of β-catenin and α-SMA in pulmonary artery was increased with time; mPAP, the thickness of pulmonary artery wall, and the area/total area of pulmonary artery (WA/TA) were also increased; however, the expression of CD31 was decreased. Interestingly, these symptoms could be improved by treatment with XAV939. In this study, in CTEPH rat model, the expression of β-catenin signal affects pulmonary vascular remodeling and pulmonary artery pressure, and positively correlated with pulmonary arterial endothelial mesenchymal transformation (EMT), indicating that β-catenin signal may play an important role in the occurrence and development of CTEPH. The inhibition of β-catenin signal and the improvement of pulmonary arterial EMT may provide therapeutic ideas for CTEPH.
Collapse
Affiliation(s)
- Meie Zeng
- Institute of Respiratory Disease, Division of Respiratory and Critical Care Medicine, Fujian Medical University, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China.,Longyan First Hospital Affiliated to Fujian Medical University, Longyan, 364000, Fujian Province, China
| | - Shimou Chen
- Fujian Provincial Geriatric Hospital, Fuzhou, 350003, Fujian Province, China
| | - Hongli Li
- Institute of Respiratory Disease, Division of Respiratory and Critical Care Medicine, Fujian Medical University, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China
| | - Zhigui Huang
- Putian College Affiliated Hospital, Putian, 351100, Fujian Province, China
| | - Dawen Wu
- Institute of Respiratory Disease, Division of Respiratory and Critical Care Medicine, Fujian Medical University, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China
| | - Yunchang Pan
- Sanming First Hospital Affiliated to Fujian Medical University, Sanming, 365000, Fujian Province, China
| | - Chaosheng Deng
- Institute of Respiratory Disease, Division of Respiratory and Critical Care Medicine, Fujian Medical University, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China.
| |
Collapse
|
3
|
Sun D, Ding D, Li Q, Xie M, Xu Y, Liu X. The preventive and therapeutic effects of AAV1-KLF4-shRNA in cigarette smoke-induced pulmonary hypertension. J Cell Mol Med 2021; 25:1238-1251. [PMID: 33342082 PMCID: PMC7812256 DOI: 10.1111/jcmm.16194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 11/29/2022] Open
Abstract
We found previously that KLF4 expression was up-regulated in cultured rat and human pulmonary artery smooth muscle cells (PASMCs) exposed to cigarette smoke (CS) extract and in pulmonary artery from rats with pulmonary hypertension induced by CS. Here, we aim to investigate whether CS-induced pulmonary hypertension (PH) is prevented and ameliorated by targeted pulmonary vascular gene knockdown of KLF4 via adeno-associated virus 1 (AAV1)-KLF4-shRNA in vivo in rat model. The preventive and therapeutic effects were observed according to the different time-point of AAV1-KLF4-shRNA intratracheal administration. We tested haemodynamic measurements of systemic and pulmonary circulations and observed the degree of pulmonary vascular remodelling. In the preventive experiment, KLF4 expression and some pulmonary circulation hemodynamic measurements such as right ventricular systolic pressure (RVSP), mean right ventricular pressure (mRVP), peak RV pressure rate of rise (dP/dt max) and right ventricle (RV) contractility index were increased significantly in the CS-induced PH model. While in the prevention group (AAV1-KLF4-shRNA group), RVSP, mRVP, dP/dt max and RV contractility index which are associated with systolic function of right ventricle decreased and the degree of pulmonary vascular remodelling relieved. In the therapeutic experiment, we observed a similar trend. Our findings emphasize the feasibility of sustained pulmonary vascular KLF4 gene knockdown using intratracheal delivery of AAV1 in an animal model of cigarette smoke-induced PH and determined gene transfer of KLF4-shRNA could prevent and ameliorate the progression of PH.
Collapse
Affiliation(s)
- Desheng Sun
- Department of Respiratory and Critical Care MedicineKey Laboratory of Pulmonary Diseases of Health MinistryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Respiratory and Critical Care MedicineAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - DanDan Ding
- Department of Respiratory and Critical Care MedicineKey Laboratory of Pulmonary Diseases of Health MinistryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qinghai Li
- Department of Respiratory and Critical Care MedicineKey Laboratory of Pulmonary Diseases of Health MinistryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Min Xie
- Department of Respiratory and Critical Care MedicineKey Laboratory of Pulmonary Diseases of Health MinistryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yongjian Xu
- Department of Respiratory and Critical Care MedicineKey Laboratory of Pulmonary Diseases of Health MinistryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiansheng Liu
- Department of Respiratory and Critical Care MedicineKey Laboratory of Pulmonary Diseases of Health MinistryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
4
|
Luo L, Zheng W, Lian G, Chen H, Li L, Xu C, Xie L. Combination treatment of adipose-derived stem cells and adiponectin attenuates pulmonary arterial hypertension in rats by inhibiting pulmonary arterial smooth muscle cell proliferation and regulating the AMPK/BMP/Smad pathway. Int J Mol Med 2017; 41:51-60. [PMID: 29115380 PMCID: PMC5746303 DOI: 10.3892/ijmm.2017.3226] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to assess the effects of therapy with adiponectin (APN) gene-modified adipose-derived stem cells (ADSCs) on pulmonary arterial hypertension (PAH) in rats and the underlying cellular and molecular mechanisms. ADSCs were successfully isolated from the rats and characterized. ADSCs were effectively infected with the green fluorescent protein (GFP)-empty (ADSCs-V) or the APN-GFP (ADSCs-APN) lentivirus and the APN expression was evaluated by ELISA. Sprague-Dawley rats were administered monocrotaline (MCT) to develop PAH. The rats were treated with MCT, ADSCs, ADSCs-V and ADSCs-APN. Then ADSCs-APN in the lung were investigated by confocal laser scanning microscopy and western blot analysis. Engrafted ADSCs in the lung were located around the vessels. Mean pulmonary arterial pressure (mPAP) and the right ventricular hypertrophy index (RVHI) in the ADSCs-APN-treated mice were significantly decreased as compared with the ADSCs and ADSCs-V treatments. Pulmonary vascular remodeling was assessed. Right ventricular (RV) function was evaluated by echocardiography. We found that pulmonary vascular remodeling and the parameters of RV function were extensively improved after ADSCs-APN treatment when compared with ADSCs and ADSCs-V treatment. Pulmonary artery smooth muscle cells (PASMCs) were isolated from the PAH rats. The antiproliferative effect of APN on PASMCs was assayed by Cell Counting Kit-8. The influence of APN and specific inhibitors on the levels of bone morphogenetic protein (BMP), adenosine monophosphate activated protein kinase (AMPK), and small mothers against decapentaplegia (Smad) pathways was detected by western blot analysis. We found that APN suppressed the proliferation of PASMCs isolated from the PAH rats by regulating the AMPK/BMP/Smad pathway. This effect was weakened by addition of the AMPK inhibitor (compound C) and BMP2 inhibitor (noggin). Therefore, combination treatment with ADSCs and APN effectively attenuated PAH in rats by inhibiting PASMC proliferation and regulating the AMPK/BMP/Smad pathway.
Collapse
Affiliation(s)
- Li Luo
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Wuhong Zheng
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Guili Lian
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Huaning Chen
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Ling Li
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Changsheng Xu
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Liangdi Xie
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
5
|
Yu M, Liu X, Wu H, Ni W, Chen S, Xu Y. Small interfering RNA against ERK1/2 attenuates cigarette smoke-induced pulmonary vascular remodeling. Exp Ther Med 2017; 14:4671-4680. [PMID: 29201166 PMCID: PMC5704260 DOI: 10.3892/etm.2017.5160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/27/2017] [Indexed: 12/21/2022] Open
Abstract
Cigarette smoke may contribute to pulmonary vascular remodeling (PVR), a result of the proliferation of pulmonary artery smooth muscle cells (PASMCs), before pulmonary hypertension in chronic obstructive pulmonary disease (COPD). Activated extracellular signal-regulated kinases 1 and 2 (ERK1/2) are considered to be involved the process of PVR. This study investigated the potential role of ERK1/2 in the proliferation of rat PASMCs (rPASMCs) and cigarette smoke-induced PVR in rats. A small interfering RNA (siRNA) against ERK1/2 (ERK1/2-siRNA) was synthesized, and it significantly reduced the expression of ERK1/2 and cyclin E1, significantly increased the proportion of cells arrested at G0/G1 phase and significantly suppressed the proliferation of rPASMCs treated with cigarette smoke extract compared with controls (all P<0.05). In rats, ERK1/2-siRNA, which was administered intranasally, also inhibited the activation of ERK1/2 and the upregulation of cyclin E1, both of which were induced after the rats were exposed to cigarette smoke for 3 months. ERK1/2-siRNA also significantly reduced PVR (observed by vessel wall thickness and the proportion of fully muscularized vessels) in cigarette smoke-exposed rats compared with a negative control siRNA (P<0.05). Collectively, these data indicated that ERK1/2-siRNA could attenuate PVR in cigarette smoke-exposed rats, and it may have therapeutic value in the treatment of COPD.
Collapse
Affiliation(s)
- Muqing Yu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hongxu Wu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wang Ni
- Department of Respiratory and Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Shixin Chen
- Department of Respiratory and Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yongjian Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
6
|
Faarvang ASA, Rørdam Preil SA, Nielsen PS, Beck HC, Kristensen LP, Rasmussen LM. Smoking is associated with lower amounts of arterial type I collagen and decorin. Atherosclerosis 2016; 247:201-6. [DOI: 10.1016/j.atherosclerosis.2016.02.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/29/2016] [Accepted: 02/17/2016] [Indexed: 12/25/2022]
|
7
|
Qin N, Yang W, Feng D, Wang X, Qi M, Du T, Sun H, Wu S. Total ginsenosides suppress monocrotaline-induced pulmonary hypertension in rats: involvement of nitric oxide and mitogen-activated protein kinase pathways. J Ginseng Res 2015; 40:285-91. [PMID: 27616905 PMCID: PMC5005363 DOI: 10.1016/j.jgr.2015.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/22/2015] [Accepted: 09/30/2015] [Indexed: 11/28/2022] Open
Abstract
Background Ginsenosides have been shown to exert beneficial pharmacological effects on the central nervous, cardiovascular, and endocrine systems. We sought to determine whether total ginsenosides (TG) inhibit monocrotaline (MCT)-induced pulmonary hypertension and to elucidate the underlying mechanism. Methods MCT-intoxicated rats were treated with gradient doses of TG, with or without NG-nitro-l-arginine methyl ester. The levels of molecules involving the regulation of nitric oxide and mitogen-activated protein kinase pathways were determined. Results TG ameliorated MCT-induced pulmonary hypertension in a dose-dependent manner, as assessed by the right ventricular systolic pressure, the right ventricular hypertrophy index, and pulmonary arterial remodeling. Furthermore, TG increased the levels of pulmonary nitric oxide, endothelial nitric oxide synthase, and cyclic guanosine monophosphate. Lastly, TG increased mitogen-activated protein kinase phosphatase-1 expression and promoted the dephosphorylation of extracellular signal-regulated protein kinases 1/2, p38 mitogen-activated protein kinase, and c-Jun NH2-terminal kinase 1/2. Conclusion TG attenuates MCT-induced pulmonary hypertension, which may involve in part the regulation of nitric oxide and mitogen-activated protein kinase pathways.
Collapse
Affiliation(s)
- Na Qin
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China; Department of Pharmacy, Luoyang Orthopedic Hospital, Orthopedics Hospital of Henan Province, Luoyang, Henan, China
| | - Wei Yang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Dongxu Feng
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China; Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Xinwen Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China; Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Muyao Qi
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Tianxin Du
- Department of Pharmacy, Luoyang Orthopedic Hospital, Orthopedics Hospital of Henan Province, Luoyang, Henan, China
| | - Hongzhi Sun
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Shufang Wu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
8
|
LI HUI, LUO KAIJUN, HOU JUAN. Inhibitory effect of Puerariae radix flavones on platelet-derived growth factor-BB-induced proliferation of vascular smooth muscle cells via PI3K and ERK pathways. Exp Ther Med 2015; 9:257-261. [PMID: 25452812 PMCID: PMC4247288 DOI: 10.3892/etm.2014.2074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/14/2014] [Indexed: 11/06/2022] Open
Abstract
Abnormal proliferation of vascular smooth muscle cells (VSMCs) results in intimal thickening of the aorta, which may lead to arteriosclerosis. Therefore, VSMC antiproliferative agents may be efficient in the prevention and treatment of arteriosclerosis. Puerariae radix (PR) is the dried root of Pueraria lobata Ohwi or Pueraria thomsonii Benth. Flavones are the main components of PR and have been shown to have a protective effect on vascular disorders in traditional Chinese medicine treatments. However, the underlying molecular mechanism remains unclear. The aim of the present study was to explore the effect of PR flavone (PRF) on platelet-derived growth factor (PDGF)-BB-induced VSMC proliferation. PDGF-BB (25 ng/ml) and different doses of PRF (10, 50, 100 and 200 ng/ml) were used to treat VSMCs. The results revealed that PRF notably inhibited the PDGF-BB-induced VSMC proliferation and induced a cell cycle arrest at growth 1 phase of the cell cycle. In addition, cell cycle-associated proteins, including cyclin D1, proliferating cell nuclear antigen and cyclin-dependent kinase 4, were found to be downregulated. Furthermore, PRF inhibited the PDGF-BB-stimulated downregulation of VSMC markers, including α-smooth muscle actin, desmin and smoothelin. PDGF-BB upregulated the phosphorylation levels of phosphatidylinositide 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK), which are associated with cell proliferation; however, these were decreased following PRF treatment. These observations indicated that PRF had a suppressive effect on PDGF-BB-induced VSMC proliferation by inhibiting PI3K and ERK pathways.
Collapse
Affiliation(s)
- HUI LI
- Department of Immunology and Microbiology, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - KAIJUN LUO
- Department of Immunology and Microbiology, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - JUAN HOU
- Department of Immunology and Microbiology, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| |
Collapse
|
9
|
Ghosh A, Pechota A, Coleman D, Upchurch GR, Eliason JL. Cigarette smoke-induced MMP2 and MMP9 secretion from aortic vascular smooth cells is mediated via the Jak/Stat pathway. Hum Pathol 2014; 46:284-94. [PMID: 25537973 DOI: 10.1016/j.humpath.2014.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/10/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
Abstract
It is hypothesized that cigarette smoke may increase MMP2 and MMP9 secretion through Jak/Stat pathway in the aorta, thereby facilitating abdominal aortic aneurysm (AAA) formation/progression in smokers. We observed through zymograms that treatment of male rat aortic vascular smooth muscle cells (RASMC) with an aqueous extract of cigarette smoke (CSE) for 24 hours resulted in a significant increase in pro-MMP9 (P = .005) and a modest increase in pro-MMP2 (P = .055) production. Western blot with protein extracts from CSE-treated RASMC showed up-regulation of pStat3, pJak2, and T-Jak2 and unchanged levels of T-Stat3. Transfection of RASMC with small interfering RNAs for Jak2, Stat3, or both Jak2 and Stat3 significantly reduced pro-MMP9 (P < .005) and pro-MMP2 (P < .05) in medium of CSE-treated RASMC compared with control small interfering RNA-transfected cells. Immunoprecipitation with total Jak2 antibody showed increased pStat3 and T-Stat3 in the cytoplasm and nucleus of CSE-treated RASMC. Immunofluorescence revealed increased presence of pJak2, T-Jak2, pStat3, and T-Stat3 in the cytoplasm and nucleus of the CSE-treated cells. Treatment of control human tissues with CSE resulted in pro-MMP9 secretion and up-regulation of the Jak/Stat proteins. In addition, AAA tissues showed more pJak2 and pStat3 than control human tissues. Therefore, inhibiting the Jak/Stat pathway could be a potential therapeutic approach in the treatment of AAA.
Collapse
Affiliation(s)
- Abhijit Ghosh
- Section of Vascular Surgery, Department of Surgery, Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, MI 48109-5867
| | - Angela Pechota
- Section of Vascular Surgery, Department of Surgery, Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, MI 48109-5867
| | - Dawn Coleman
- Section of Vascular Surgery, Department of Surgery, Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, MI 48109-5867
| | - Gilbert R Upchurch
- University of Virginia, Division of Vascular and Endovascular Surgery, Charlottesville, VA 800679
| | - Jonathan L Eliason
- Section of Vascular Surgery, Department of Surgery, Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, MI 48109-5867.
| |
Collapse
|