1
|
Zhou W, Li H, Zhang J, Liu C, Liu D, Chen X, Ouyang J, Zeng T, Peng S, Ouyang F, Long Y, Li Y. Identification and mechanism analysis of biomarkers related to butyrate metabolism in COVID-19 patients. Ann Med 2025; 57:2477301. [PMID: 40074706 PMCID: PMC11905318 DOI: 10.1080/07853890.2025.2477301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Butyrate may inhibit SARS-CoV-2 replication and affect the development of COVID-19. However, there have been no systematic comprehensive analyses of the role of butyrate metabolism-related genes (BMRGs) in COVID-19. METHODS We performed differential expression analysis of BMRGs in the brain, liver and pancreas of COVID-19 patients and controls in GSE157852 and GSE151803. The differentially expressed genes (DEGs) and module genes between COVID-19 patients and healthy controls in GSE171110 were screened through 'limma' and 'WGANA' R package, respectively, followed by an intersection with BMRGs via 'ggvenn' R package. Six machine learning algorithms were employed to determine the best model for identifying biomarkers, and receiver operating characteristic (ROC) curves were plotted to evaluate the diagnostic value of the biomarkers in COVID-19. Moreover, the differences in immune-infiltrating cells between the COVID-19 and control groups were compared using CIBERSORT. The differences in immune cells and expression levels of biomarkers in immune cells among different tissues were analysed using GSE171668. RESULTS The BMRGs were the most different in the brain between the COVID-19 and control groups, including 21 upregulated and 16 downregulated genes. Five important common BMRGs were screened as biomarkers for COVID-19 using XGBoost, namely CCNB1, CCNA2, BRCA1, HBB and HSPA5, with increased diagnostic performance. Enrichment analysis revealed that these five genes were related to the cell cycle, cell proliferation and cell senescence. The infiltrating abundance of 12 immune cells was different between the COVID-19 and control groups. Finally, the expression levels of HSPA5, BRCA1 and HBB were higher in annotated cells than in CCNB1 and CCNA2, and there were four different types of immune cells in the liver, heart, lungs and kidneys. CONCLUSIONS These five genes may be potential biomarkers of butyrate metabolism in COVID-19 patients. These findings provide a direction for further studies on the molecular mechanisms underlying COVID-19.
Collapse
Affiliation(s)
- Wenchao Zhou
- Department of Assisted Reproductive Centre, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
- Department of Gynecology, The Second Affiliated Hospital, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Hui Li
- Department of Assisted Reproductive Centre, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Juan Zhang
- Department of Assisted Reproductive Centre, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Changsheng Liu
- Department of Scientific Research, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Dan Liu
- Department of Assisted Reproductive Centre, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Xupeng Chen
- Department of Gynecology, The Second Affiliated Hospital, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Jing Ouyang
- Department of Infectious Disease, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Tian Zeng
- Department of Scientific Research, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Shuang Peng
- Department of Infectious Disease, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Fan Ouyang
- Department of Cardiology, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Yunzhu Long
- Department of Infectious Disease, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Yukun Li
- Department of Assisted Reproductive Centre, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| |
Collapse
|
2
|
Bao X, Li Y, Liu X, Feng Y, Xu X, Sun G, Wang W, Li B, Li Z, Yang J. Effect of acute Cu exposure on immune response mechanisms of golden cuttlefish (Sepia esculenta). FISH & SHELLFISH IMMUNOLOGY 2022; 130:252-260. [PMID: 36122637 DOI: 10.1016/j.fsi.2022.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Sepia esculenta is a common economic cephalopod that has received extensive attention due to the tender meat, rich protein content and certain medicinal value thereof. Over the past decade, multiple industries have discharged waste into the ocean in large quantities, thereby significantly increasing the concentration of heavy metals in the ocean. Copper (Cu) is a common heavy metal in the ocean. The increase of Cu content will affect numerous biological processes such as immunity and metabolism of marine organisms. High concentrations of Cu may inhibit S. esculenta growth, development, swimming, and other processes, which would significantly affect its culture. In this research, transcriptome analysis is used to initially explore Cu-exposed S. esculenta larval immune response mechanisms. And compared to control group with normally growing larvae, 2056 differentially expressed genes (DEGs) are identified in experimental group with Cu-exposed larvae. The results of DEGs functional enrichment analyses including GO and KEGG indicate that Cu exposure might promote inflammatory and innate immune responses in cuttlefish larvae. Then, 10 key genes that might regulate larval immunity are identified using a comprehensive analysis that combines protein-protein interaction (PPI) network and KEGG functional enrichment analyses, of which three genes with the highest number of protein interactions or involve in more KEGG signaling pathways are identified as hub genes that might significantly affect larval immune response processes. Comprehensive analysis of PPI network and KEGG signaling pathway are used for the first time to explore Cu-exposed S. esculenta larval immune response mechanisms. Our results preliminarily reveal immune response mechanisms of cephalopods exposed to heavy metals and provide valuable resources for further understanding mollusk immunity.
Collapse
Affiliation(s)
- Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yan Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Bin Li
- School of Agriculture, Ludong University, Yantai, 264025, China; Yantai Haiyu Marine Science and Technology Co. Ltd., Yantai, 264004, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
3
|
Sun D, Wan X, Pan BB, Sun Q, Ji XB, Zhang F, Zhang H, Cao CC. Bioinformatics Analysis of Genes and Pathways of CD11b +/Ly6C intermediate Macrophages after Renal Ischemia-Reperfusion Injury. Curr Med Sci 2018; 38:70-77. [PMID: 30074154 PMCID: PMC7089064 DOI: 10.1007/s11596-018-1848-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/08/2017] [Indexed: 12/12/2022]
Abstract
Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI), which could induce the poor prognosis. The purpose of this study was to characterize the molecular mechanism of the functional changes of CDllb+/Ly6Cintermediate macrophages after renal IRI. The gene expression profiles of CDllb+/Ly6Cintermcdiate macrophages of the sham surgery mice, and the mice 4 h, 24 h and 9 days after renal IRI were downloaded from the Gene Expression Omnibus database. Analysis of mRNA expression profiles was conducted to identify differentially expressed genes (DEGs), biological processes and pathways by the series test of cluster. Protein-protein interaction network was constructed and analysed to discover the key genes. A total of 6738 DEGs were identified and assigned to 20 model profiles. DEGs in profile 13 were one of the predominant expression profiles, which are involved in immune cell chemotaxis and proliferation. Signet analysis showed that Atp5al, Atp5o, Cox4i, Cdc42, Rac2 and Nhp2 were the key genes involved in oxidation-reduction, apoptosis, migration, M1-M2 differentiation, and proliferation of macrophages. RPS18 may be an appreciate reference gene as it was stable in macrophages. The identified DEGs and their enriched pathways investigate factors that may participate in the functional changes of CD 1lb+Ly6Cintermediate macrophages after renal IRI. Moreover, the vital gene Nhp2 may involve the polarization of macrophages, which may be a new target to affect the process of AKI.
Collapse
Affiliation(s)
- Dong Sun
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China
| | - Xin Wan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China
| | - Bin-bin Pan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China
| | - Qing Sun
- Department of Nephrology, The Affiliated Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166 China
| | - Xiao-bing Ji
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China
| | - Feng Zhang
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China
| | - Hao Zhang
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China
| | - Chang-chun Cao
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China
- Department of Nephrology, The Affiliated Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166 China
| |
Collapse
|
4
|
Ren YJ, Huang T, Yu HL, Zhang L, He QJ, Xiong ZF, Peng H. Expression of β-catenin protein in hepatocellular carcinoma and its relationship with alpha-fetoprotein. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2016; 36:846-851. [PMID: 27924522 DOI: 10.1007/s11596-016-1673-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/20/2016] [Indexed: 01/15/2023]
Abstract
This study aimed to investigate the expression of β-catenin in hepatocellular carcinoma (HCC) tissues and its relationship with α-fetoprotein (AFP) in HCC. Immunohistochemistry was used to determine the expression of β-catenin in normal liver tissues (n=10), liver cirrhosis tissues (n=20), and primary HCC tissues (n=60). The relationship between β-catenin expression and clinical parameters of HCC was investigated. Real-time PCR and Western blotting were used to detect the mRNA and protein expression levels of β-catenin in the liver cancer cell line SMMC-7721 transfected with a plasmid encoding AFP, and also the mRNA and protein expression levels of β-catenin were measured in the liver cancer cell line Huh7 before and after the transfection with AFP shRNA plasmids. The results showed that β-catenin was only expressed on the cell membrane in normal liver tissues. Its localization to the cytoplasm and nucleus of cells was observed in a small proportion of cirrhotic tissues or adjacent HCC tissues, and such ectopic expression of β-catenin was predominant in HCC tissues. The abnormal expression of β-catenin was correlated with serum AFP levels, cancer cell differentiation and vascular invasion (P<0.05). Additionally, the increased expression of AFP resulted in the upregulation of β-catenin mRNA and protein levels, while knockdown of AFP with AFP shRNA led to significantly decreased β-catenin mRNA and protein levels (P<0.05). It was suggested that the abnormal expression of β-catenin is implicated in hepatic carcinogenesis and development. AFP can lead to increased expression of β-catenin, which may account for the poor prognosis of AFP-associated HCC patients.
Collapse
Affiliation(s)
- Ya-Jun Ren
- Division of Gastroenterology, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Tao Huang
- Division of Pediatrics, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430064, China
| | - Hong-Lu Yu
- Division of Gastroenterology, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Li Zhang
- Division of Gastroenterology, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Qian-Jin He
- Department of General Surgery, Center Hospital of Huanggang, Huanggang, 438099, China
| | - Zhi-Fan Xiong
- Division of Gastroenterology, Huazhong University of Science and Technology, Wuhan, 430077, China.
| | - Hua Peng
- Department of Urology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China.
| |
Collapse
|