1
|
Zhou Y, Sun C, Tu YH, Song RH. The effect of Zizheng Dihuang compound on respiratory syncytial virus-induced pneumonia in mice via modulation of toll-like receptor 3-interferon regulatory factor 3/nuclear factor-kappa B signalling pathway. Asian J Surg 2024:S1015-9584(24)02577-6. [PMID: 39672719 DOI: 10.1016/j.asjsur.2024.10.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/28/2024] [Indexed: 12/15/2024] Open
Affiliation(s)
- Yi Zhou
- Department of Otolaryngology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, 230031, Anhui Province, China; Department of Otolaryngology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong Province, China
| | - Chen Sun
- Department of Otolaryngology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, 230031, Anhui Province, China; Anhui College of Traditional Chinese Medicine, Wuhu, 241005, Anhui Province, China
| | - Yan-Hong Tu
- Department of Otolaryngology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, 230031, Anhui Province, China
| | - Ruo-Hui Song
- Department of Otolaryngology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, 230031, Anhui Province, China.
| |
Collapse
|
2
|
Yang M, Zhang X, Liu Q, Wang Y. Network pharmacology, molecular docking, and untargeted metabolomics reveal molecular mechanisms of multi-targets effects of Qingfei Tongluo Plaster improving respiratory syncytial virus pneumonia. CHINESE HERBAL MEDICINES 2024; 16:638-655. [PMID: 39606255 PMCID: PMC11589485 DOI: 10.1016/j.chmed.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/20/2024] [Accepted: 07/26/2024] [Indexed: 11/29/2024] Open
Abstract
Objective Qingfei Tongluo Plaster (QFP), an improved Chinese medicine hospital preparation, is an attractive treatment option due to its well clinical efficacy, convenience, economy, and patient compliance in the treatment of respiratory syncytial virus (RSV) pneumonia. The aim of this study was to investigate the efficacy mechanism of QFP on RSV rats from the perspective of alleviating lung inflammation and further explore the changes of serum metabolites and metabolic pathways in RSV rats under the influence of QFP. Methods This study used network pharmacological methods and molecular docking combined with molecular biology and metabolomics from multi-dimensional perspectives to screen and verify the therapeutic targets. Open online databases were used to speculate the gene targets of efficient ingredients and diseases. Then, we used the String database to examine the fundamental interaction of common targets of drugs and diseases. An online enrichment analysis was performed to predict the functional pathways. Molecular docking was applied to discover the binding modes between essential ingredients and crucial gene targets. Finally, we demonstrated the anti-inflammatory ability of QFP in the RSV-evoked pneumonia rat model and explained the mechanism in combination with the metabolomics results. Results There were 19 critical targets defined as the core targets: tumor necrosis factor (TNF), inducible nitric oxide synthase 2 (NOS2), mitogen-activated protein kinase 14 (MAPK14), g1/S-specific cyclin-D1 (CCND1), signal transducer and activator of transcription 1-alpha/beta (STAT1), proto-oncogene tyrosine-protein kinase Src (SRC), cellular tumor antigen p53 (TP53), interleukin-6 (IL6), hypoxia-inducible factor 1-alpha (HIF1A), RAC-alpha serine/threonine-protein kinase (AKT1), signal transducer and activator of transcription 3 (STAT3), heat shock protein HSP 90-alpha (HSP90AA1), tyrosine-protein kinase JAK2 (JAK2), cyclin-dependent kinase inhibitor 1 (CDKN1A), mitogen-activated protein kinase 3 (MAPK3), epidermal growth factor receptor (EGFR), myc proto-oncogene protein (MYC), protein c-Fos (FOS) and transcription factor p65 (RELA). QFP treated RSV pneumonia mainly through the phosphatidylinositol 3-kinase (PI3K)/RAC AKT pathway, HIF-1 pathway, IL-17 pathway, TNF pathway, and MAPK pathway. Animal experiments proved that QFP could effectively ameliorate RSV-induced pulmonary inflammation. A total of 28 metabolites underwent significant changes in the QFP treatment, and there are four metabolic pathways consistent with the KEGG pathway analyzed by network pharmacology, suggesting that they may be critical processes related to treatment. Conclusion These results provide essential perspicacity into the mechanisms of action of QFP as a promising anti-RSV drug.
Collapse
Affiliation(s)
- Mengfei Yang
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Xiuying Zhang
- Department of Pediatrics, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Qing Liu
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Yongxue Wang
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| |
Collapse
|
3
|
Xiong Y, Tan G, Tao K, Zhou Y, Li J, Ou W, Shen C, Xie T, Zhang C, Hou Y, Ji J. Emodin inhibits respiratory syncytial virus entry by interactions with fusion protein. Front Microbiol 2024; 15:1393511. [PMID: 38817970 PMCID: PMC11137228 DOI: 10.3389/fmicb.2024.1393511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Respiratory syncytial virus (RSV) fusion (F) protein is essential for facilitating virus entry into host cells, providing a hopeful path for combating viral diseases. However, F protein inhibitors can rapidly select for viral resistance. Thus, discovering new inhibitors of F-protein is necessary to enrich the RSV drug development pipeline. Methods In this study, we screen 25 bioactive compounds from Chinese herbal medicines that exhibit a strong binding to the RSV-F protein using surface plasmon resonance. Results After screening, we found emodin could strongly bind to RSV-F protein, and could effectively curb RSV infection. Further investigations certificated that emodin specifically disrupts the attachment and internalization phases of RSV infection by targeting the RSV-F protein. In vivo studies with mice infected with RSV demonstrated that emodin effectively reduces lung pathology. This therapeutic effect is attributed to emodin's capacity to diminish pro-inflammatory cytokine production and reduce viral load in the lungs. Discussion In conclusion, our findings provide initial insights into the mechanism by which emodin counters RSV infection via engagement with the RSV-F protein, establishing it as a viable contender for the development of novel therapeutic agents aimed at RSV.
Collapse
Affiliation(s)
- Yingcai Xiong
- Wuxi Traditional Chinese Medicine Hospial Afiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guangxing Tan
- Wuxi Traditional Chinese Medicine Hospial Afiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China
| | - Keyu Tao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yinghui Zhou
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiying Ou
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cunsi Shen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Li K, Yao Q, Zhang M, Li Q, Guo L, Li J, Yang J, Cai W. Exploring the effective components and potential mechanisms of Zukamu granules against acute upper respiratory tract infections by UHPLC-Q-Exactive Orbitrap-MS and network pharmacology analysis. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
|
5
|
Wang X, Yang S, Li Y, Jin X, Lu J, Wu M. Role of emodin in atherosclerosis and other cardiovascular diseases: Pharmacological effects, mechanisms, and potential therapeutic target as a phytochemical. Biomed Pharmacother 2023; 161:114539. [PMID: 36933375 DOI: 10.1016/j.biopha.2023.114539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/20/2023] Open
Abstract
The morbidity and mortality of cardiovascular diseases (CVDs) are increasing in recent years, and atherosclerosis (AS), a major CVD, becomes a disorder that afflicts human beings severely, especially the elders. AS is recognized as the primary cause and pathological basis of some other CVDs. The active constituents of Chinese herbal medicines have garnered increasing interest in recent researches owing to their influence on AS and other CVDs. Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a naturally occurring anthraquinone derivative found in some Chinese herbal medicines such as Rhei radix et rhizome, Polygoni cuspidati rhizoma et radix and Polygoni multiflori root. In this paper, we first review the latest researches about emodin's pharmacology, metabolism and toxicity. Meanwhile, it has been shown to be effective in treating CVDs caused by AS in dozens of previous studies. Therefore, we systematically reviewed the mechanisms by which emodin treats AS. In summary, these mechanisms include anti-inflammatory activity, lipid metabolism regulation, anti-oxidative stress, anti-apoptosis and vascular protection. The mechanisms of emodin in other CVDs are also discussed, such as vasodilation, inhibition of myocardial fibrosis, inhibition of cardiac valve calcification and antiviral properties. We have further summarized the potential clinical applications of emodin. Through this review, we hope to provide guidance for clinical and preclinical drug development.
Collapse
Affiliation(s)
- Xinyue Wang
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujuan Li
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao Jin
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Lu
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Min Wu
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Chan-Zapata I, Borges-Argáez R, Ayora-Talavera G. Quinones as Promising Compounds against Respiratory Viruses: A Review. Molecules 2023; 28:1981. [PMID: 36838969 PMCID: PMC9967002 DOI: 10.3390/molecules28041981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Respiratory viruses represent a world public health problem, giving rise to annual seasonal epidemics and several pandemics caused by some of these viruses, including the COVID-19 pandemic caused by the novel SARS-CoV-2, which continues to date. Some antiviral drugs have been licensed for the treatment of influenza, but they cause side effects and lead to resistant viral strains. Likewise, aerosolized ribavirin is the only drug approved for the therapy of infections by the respiratory syncytial virus, but it possesses various limitations. On the other hand, no specific drugs are licensed to treat other viral respiratory diseases. In this sense, natural products and their derivatives have appeared as promising alternatives in searching for new compounds with antiviral activity. Besides their chemical properties, quinones have demonstrated interesting biological activities, including activity against respiratory viruses. This review summarizes the activity against respiratory viruses and their molecular targets by the different types of quinones (both natural and synthetic). Thus, the present work offers a general overview of the importance of quinones as an option for the future pharmacological treatment of viral respiratory infections, subject to additional studies that support their effectiveness and safety.
Collapse
Affiliation(s)
- Ivan Chan-Zapata
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Chuburná de Hidalgo, Merida 97205, Mexico
| | - Rocío Borges-Argáez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Chuburná de Hidalgo, Merida 97205, Mexico
| | - Guadalupe Ayora-Talavera
- Departamento de Virología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Paseo de Las Fuentes, Merida 97225, Mexico
| |
Collapse
|
7
|
Shokry S, Hegazy A, Abbas AM, Mostafa I, Eissa IH, Metwaly AM, Yahya G, El-Shazly AM, Aboshanab KM, Mostafa A. Phytoestrogen β-Sitosterol Exhibits Potent In Vitro Antiviral Activity against Influenza A Viruses. Vaccines (Basel) 2023; 11:228. [PMID: 36851106 PMCID: PMC9964242 DOI: 10.3390/vaccines11020228] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Influenza is a contagious infection in humans that is caused frequently by low pathogenic seasonal influenza viruses and occasionally by pathogenic avian influenza viruses (AIV) of H5, H7, and H9 subtypes. Recently, the clinical sector in poultry and humans has been confronted with many challenges, including the limited number of antiviral drugs and the rapid evolution of drug-resistant variants. Herein, the anti-influenza activities of various plant-derived phytochemicals were investigated against highly pathogenic avian influenza A/H5N1 virus (HPAIV H5N1) and seasonal low pathogenic human influenza A/H1N1 virus (LPHIV H1N1). Out of the 22 tested phytochemicals, the steroid compounds β-sitosterol and β-sitosterol-O-glucoside have very potent activity against the predefined influenza A viruses (IAV). Both steroids could induce such activity by affecting multiple stages during IAV replication cycles, including viral adsorption and replication with a major and significant impact on the virus directly in a cell-free status "viricidal effect". On a molecular level, several molecular docking studies suggested that β-sitosterol and β-sitosterol-O-glucoside exhibited viricidal effects through blocking active binding sites of the hemagglutinin surface protein, as well as showing inhibitory effects against replication through the binding with influenza neuraminidase activity and blocking the active sites of the M2 proton channel activity. The phytoestrogen β-sitosterol has structural similarity with the active form of the female sex hormone estradiol, and this similarity is likely one of the molecular determinants that enables the phytoestrogen β-sitosterol and its derivative to control IAV infection in vitro. This promising anti-influenza activity of β-sitosterol and its O-glycoside derivative, according to both in vitro and cheminformatics studies, recommend both phytochemicals for further studies going through preclinical and clinical phases as efficient anti-influenza drug candidates.
Collapse
Affiliation(s)
- Sara Shokry
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Akram Hegazy
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, Giza 12613, Egypt
| | - Ahmad M. Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, King Salman International University (KSIU), Sinai 46612, Egypt
| | - Islam Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M. Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Assem M. El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Sharkia, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
8
|
Guo Y, Zhang R, Li W. Emodin in cardiovascular disease: The role and therapeutic potential. Front Pharmacol 2022; 13:1070567. [PMID: 36618923 PMCID: PMC9816479 DOI: 10.3389/fphar.2022.1070567] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Emodin is a natural anthraquinone derivative extracted from Chinese herbs, such as Rheum palmatum L, Polygonum cuspidatum, and Polygonum multiflorum. It is now also a commonly used clinical drug and is listed in the Chinese Pharmacopoeia. Emodin has a wide range of pharmacological properties, including anticancer, antiinflammatory, antioxidant, and antibacterial effects. Many in vivo and in vitro experiments have demonstrated that emodin has potent anticardiovascular activity. Emodin exerts different mechanisms of action in different types of cardiovascular diseases, including its involvement in pathological processes, such as inflammatory response, apoptosis, cardiac hypertrophy, myocardial fibrosis, oxidative damage, and smooth muscle cell proliferation. Therefore, emodin can be used as a therapeutic drug against cardiovascular disease and has broad application prospects. This paper summarized the main pharmacological effects and related mechanisms of emodin in cardiovascular diseases in recent years and discussed the limitations of emodin in terms of extraction preparation, toxicity, and bioavailability-related pharmacokinetics in clinical applications.
Collapse
Affiliation(s)
- Yuanyuan Guo
- School of Pharmacy, Harbin University of Commerce, Harbin, China,Department of Cardiology, Geriatrics, and General Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rongzhen Zhang
- Department of Heart Failure, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenlan Li
- School of Pharmacy, Harbin University of Commerce, Harbin, China,*Correspondence: Wenlan Li,
| |
Collapse
|
9
|
Ntemafack A, Singh RV, Ali S, Kuiate JR, Hassan QP. Antiviral potential of anthraquinones from Polygonaceae, Rubiaceae and Asphodelaceae: Potent candidates in the treatment of SARS-COVID-19, A comprehensive review. SOUTH AFRICAN JOURNAL OF BOTANY : OFFICIAL JOURNAL OF THE SOUTH AFRICAN ASSOCIATION OF BOTANISTS = SUID-AFRIKAANSE TYDSKRIF VIR PLANTKUNDE : AMPTELIKE TYDSKRIF VAN DIE SUID-AFRIKAANSE GENOOTSKAP VAN PLANTKUNDIGES 2022; 151:146-155. [PMID: 36193345 PMCID: PMC9519529 DOI: 10.1016/j.sajb.2022.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/03/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Medicinal plants are being used as an alternative source of health management to cure various human ailments. The healing role is attributed to the hidden dynamic groups of various phytoconstituents, most of which have been recorded from plants and their derivatives. Nowadays, medicinal plants have gained more attention due to their pharmacological and industrial potential. Aromatic compounds are one of the dynamic groups of secondary metabolites (SM) naturally present in plants; and anthraquinones of this group are found to be attractive due to their high bioactivity and low toxicity. They have been reported to exhibit anticancer, antimicrobial, immune-suppressive, antioxidant, antipyretic, diuretic and anti-inflammatory activities. Anthraquinones have been also shown to exhibit potent antiviral effects against different species of viruses. Though, it has been reported that a medicinal plant with antiviral activity against one viral infection may be used to combat other types of viral infections. Therefore, in this review, we explored and highlighted the antiviral properties of anthraquinones of Polygonaceae, Rubiaceae and Asphodelaceae families. Anthraquinones from these plant families have been reported for their effects on human respiratory syncytial virus and influenza virus. They are hence presumed to have antiviral potential against SARS-CoV as well. Thus, anthraquinones are potential candidates that need to be screened thoroughly and developed as drugs to combat COVID-19. The information documented in this review could therefore serve as a starting point in developing novel drugs that may help to curb the SARS-COVID-19 pandemic.
Collapse
Affiliation(s)
- Augustin Ntemafack
- Department of Biochemistry, University of Dschang, Dschang, Cameroon
- Department of Biochemistry and Molecular Biology, Indiana University-Purdue University Indianapolis, Indiana, USA
| | - Rahul Vikram Singh
- Department of Dietetic and Nutrition Technology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Sabeena Ali
- Molecular Biology and Plant Biotechnology Division, CSIR - Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, India
| | | | - Qazi Parvaiz Hassan
- Molecular Biology and Plant Biotechnology Division, CSIR - Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, India
| |
Collapse
|
10
|
Sharma N, Kulkarni GT, Bhatt AN, Satija S, Singh L, Sharma A, Dua K, Karwasra R, Khan AA, Ahmad N, Raza K. Therapeutic Options for the SARS-CoV-2 Virus: Is There a Key in Herbal Medicine? Nat Prod Commun 2022. [DOI: 10.1177/1934578x221126303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
SARS-CoV-2 has been responsible for over 500 million cumulative cases all over the world since December 2019 and has marked the third introduction of a highly pathogenic virus after SARS-CoV and MERS-CoV. This virus is in a winning situation because scientists are still racing to explore effective therapeutics, vaccines, and event treatment regimens. In view of progress in current disease management, until now none of the preventive/treatment measures can be considered entirely effective to treat SARS-CoV-2 infection. Therefore, it is required to look up substitute ways for the management of this disease. In this context, herbal medicines could be a good choice. This article emphasizes the antiviral potential of some herbal constituents which further can be a drug of choice in SARS-CoV-2 treatment. This article may be a ready reference for discovering natural lead compounds and targets in SARS-CoV-2 associated works.
Collapse
Affiliation(s)
- Nitin Sharma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | | | - Anant Narayan Bhatt
- Department of Nuclear Medicine, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Lubhan Singh
- Department of Pharmacology, KharvelSubharti College of Pharmacy, Swami Vivekanand Subharti University, Meerut, India
| | - Anjana Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, UP, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ritu Karwasra
- Central Council for Research in Unani Medicine (CCRUM), Ministry of AYUSH, Govt of India, New Delhi, India
| | - Asim Ali Khan
- Central Council for Research in Unani Medicine (CCRUM), Ministry of AYUSH, Govt of India, New Delhi, India
| | - Nadeem Ahmad
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
11
|
Yang M, Wang Y, Yue Y, Liang L, Peng M, Zhao M, Chen Y, Cao X, Li W, Li C, Zhang H, Du J, Zhong R, Xia T, Shu Z. Traditional Chinese medicines as effective agents against influenza virus-induced pneumonia. Biomed Pharmacother 2022; 153:113523. [DOI: 10.1016/j.biopha.2022.113523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/02/2022] Open
|
12
|
Shao Q, Liu T, Wang W, Liu T, Jin X, Chen Z. Promising Role of Emodin as Therapeutics to Against Viral Infections. Front Pharmacol 2022; 13:902626. [PMID: 35600857 PMCID: PMC9115582 DOI: 10.3389/fphar.2022.902626] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Emodin is an anthraquinone derivative that is widely present in natural plants and has a wide spectrum of pharmacological effects, such as antibacterial, anti-inflammatory, anti-fibrotic and anticancer and so on. Through reviewing studies on antiviral effect of emodin in the past decades, we found that emodin exhibits ability of inhibiting the infection and replication of more than 10 viruses in vitro and in vivo, including herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), human cytomegalovirus (HCMV), Epstein-Barr virus (EBV), coxsackievirus B (CVB), hepatitis B virus (HBV), influenza A virus (IAV), SARS-CoV, viral haemorrhagic septicaemia rhabdovirus (VHSV), enterovirus 71 (EV71), dengue virus serotype 2 (DENV-2) and Zika virus (ZIKV). Therefore, this review aims to summarize the antiviral effect of emodin, in order to provide reference and hopes to support the further investigations.
Collapse
Affiliation(s)
- Qingqing Shao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjia Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianli Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ximing Jin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhuo Chen,
| |
Collapse
|
13
|
Photodynamic Inactivation of Human Coronaviruses. Viruses 2022; 14:v14010110. [PMID: 35062314 PMCID: PMC8779093 DOI: 10.3390/v14010110] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Photodynamic inactivation (PDI) employs a photosensitizer, light, and oxygen to create a local burst of reactive oxygen species (ROS) that can inactivate microorganisms. The botanical extract PhytoQuinTM is a powerful photosensitizer with antimicrobial properties. We previously demonstrated that photoactivated PhytoQuin also has antiviral properties against herpes simplex viruses and adenoviruses in a dose-dependent manner across a broad range of sub-cytotoxic concentrations. Here, we report that human coronaviruses (HCoVs) are also susceptible to photodynamic inactivation. Photoactivated-PhytoQuin inhibited the replication of the alphacoronavirus HCoV-229E and the betacoronavirus HCoV-OC43 in cultured cells across a range of sub-cytotoxic doses. This antiviral effect was light-dependent, as we observed minimal antiviral effect of PhytoQuin in the absence of photoactivation. Using RNase protection assays, we observed that PDI disrupted HCoV particle integrity allowing for the digestion of viral RNA by exogenous ribonucleases. Using lentiviruses pseudotyped with the SARS-CoV-2 Spike (S) protein, we once again observed a strong, light-dependent antiviral effect of PhytoQuin, which prevented S-mediated entry into human cells. We also observed that PhytoQuin PDI altered S protein electrophoretic mobility. The PhytoQuin constituent emodin displayed equivalent light-dependent antiviral activity to PhytoQuin in matched-dose experiments, indicating that it plays a central role in PhytoQuin PDI against CoVs. Together, these findings demonstrate that HCoV lipid envelopes and proteins are damaged by PhytoQuin PDI and expands the list of susceptible viruses.
Collapse
|
14
|
Shi M, Peng B, Li A, Li Z, Song P, Li J, Xu R, Li N. Broad Anti-Viral Capacities of Lian-Hua-Qing-Wen Capsule and Jin-Hua-Qing-Gan Granule and Rational use Against COVID-19 Based on Literature Mining. Front Pharmacol 2021; 12:640782. [PMID: 34054522 PMCID: PMC8160462 DOI: 10.3389/fphar.2021.640782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/14/2021] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) has become a matter of international concern as the disease is spreading exponentially. Statistics showed that infected patients in China who received combined treatment of Traditional Chinese Medicine and modern medicine exhibited lower fatality rate and relatively better clinical outcomes. Both Lian-Hua-Qing-Wen Capsule (LHQWC) and Jin-Hua-Qing-Gan Granule (JHQGG) have been recommended by China Food and Drug Administration for the treatment of COVID-19 and have played a vital role in the prevention of a variety of viral infections. Here, we desired to analyze the broad-spectrum anti-viral capacities of LHQWC and JHQGG, and to compare their pharmacological functions for rational clinical applications. Based on literature mining, we found that both LHQWC and JHQGG were endowed with multiple antiviral activities by both targeting viral life cycle and regulating host immune responses and inflammation. In addition, from literature analyzed, JHQGG is more potent in modulating viral life cycle, whereas LHQWC exhibits better efficacies in regulating host anti-viral responses. When translating into clinical applications, oral administration of LHQWC could be more beneficial for patients with insufficient immune functions or for patients with alleviated symptoms after treatment with JHQGG.
Collapse
Affiliation(s)
- Mingfei Shi
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - An Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyun Li
- The Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ping Song
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Li
- Department of Nephropathy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ruodan Xu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Janeczko M. Emodin Reduces the Activity of (1,3)- β-D-glucan Synthase from Candida albicans and Does Not Interact with Caspofungin. Pol J Microbiol 2019; 67:463-470. [PMID: 30550232 PMCID: PMC7256869 DOI: 10.21307/pjm-2018-054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2018] [Indexed: 12/28/2022] Open
Abstract
Candidiasis is the most common opportunistic yeast infection, with Candida albicans as a paramount causative species. (1,3)-β-D-glucan is one of the three main targets of clinically available antifungal agents used to treat Candida infections. It is one of the most abundant fungal cell wall components. Echinocandins represent the newest class of antifungals affecting cell wall biosynthesis through non-competitive inhibition of (1,3)-β-D-glucan synthase. Therefore, treatment with echinocandins causes defects in fungal cell integrity. In the present study, similar activity of emodin (6-methyl-1,3,8-trihydroxyanthraquinone) has been revealed. Many reports have already shown the antifungal potential of this pleiotropic molecule, including its activity against C. albicans. The aim of this report was to evaluate the activity of emodin towards a new molecular target, i.e. (1,3)-β-D-glucan synthase isolated from Candida cells. Moreover, given the identical mechanism of the activity of both molecules, interaction of emodin with caspofungin was determined. The study revealed that emodin reduced (1,3)-β-D-glucan synthase activity and increased cell wall damage, which was evidenced by both a sorbitol protection assay and an aniline blue staining assay. Furthermore, the synergy testing method showed mainly independence of the action of both tested antifungal agents, i.e. emodin and caspofungin used in combination.
Collapse
Affiliation(s)
- Monika Janeczko
- Department of Molecular Biology, The John Paul II Catholic University of Lublin , Lublin , Poland
| |
Collapse
|
16
|
Natural Products Isolated from Oriental Medicinal Herbs Inactivate Zika Virus. Viruses 2019; 11:v11010049. [PMID: 30641880 PMCID: PMC6356660 DOI: 10.3390/v11010049] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023] Open
Abstract
Zika virus (ZIKV) has been associated with serious health conditions, and an intense search to discover different ways to prevent and treat ZIKV infection is underway. Berberine and emodin possess several pharmacological properties and have been shown to be particularly effective against the entry and replication of several viruses. We show that emodin and berberine trigger a virucidal effect on ZIKV. When the virus was exposed to 160 µM of berberine, a reduction of 77.6% in the infectivity was observed; when emodin was used (40 µM), this reduction was approximately 83.3%. Dynamic light scattering data showed that both compounds significantly reduce the hydrodynamic radius of virus particle in solution. We report here that berberine and emodin, two natural compounds, have strong virucidal effect in Zika virus.
Collapse
|
17
|
Label-free quantitative proteomics reveals fibrinopeptide B and heparin cofactor II as potential serum biomarkers in respiratory syncytial virus-infected mice treated with Qingfei oral liquid formula. Chin J Nat Med 2018; 16:241-251. [DOI: 10.1016/s1875-5364(18)30054-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Indexed: 01/28/2023]
|
18
|
Li J, Zhou R, Bie BB, Huang N, Guo Y, Chen HY, Shi MJ, Yang J, Zhang J, Li ZF. Emodin and baicalein inhibit sodium taurocholate-induced vacuole formation in pancreatic acinar cells. World J Gastroenterol 2018; 24:35-45. [PMID: 29358880 PMCID: PMC5757123 DOI: 10.3748/wjg.v24.i1.35] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effects of combined use of emodin and baicalein (CEB) at the cellular and organism levels in severe acute pancreatitis (SAP) and explore the underlying mechanism. METHODS SAP was induced by retrograde infusion of 5% sodium taurocholate into the pancreatic duct in 48 male SD rats. Pancreatic histopathology score, serum amylase activity, and levels of tumour necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and IL-10 were determined to assess the effects of CEB at 12 h after the surgery. The rat pancreatic acinar cells were isolated from healthy male SD rats using collagenase. The cell viability, cell ultrastructure, intracellular free Ca2+ concentration, and inositol (1,4,5)-trisphosphate receptor (IP3R) expression were investigated to assess the mechanism of CEB. RESULTS Pancreatic histopathology score (2.07 ± 1.20 vs 6.84 ± 1.13, P < 0.05) and serum amylase activity (2866.2 ± 617.7 vs 5241.3 ± 1410.0, P < 0.05) were significantly decreased in the CEB (three doses) treatment group compared with the SAP group (2.07 ± 1.20 vs 6.84 ± 1.13, P < 0.05). CEB dose-dependently reduced the levels of the pro-inflammatory cytokines IL-6 (466.82 ± 48.55 vs 603.50 ± 75.53, P < 0.05) and TNF-α (108.04 ± 16.10 vs 215.56 ± 74.67, P < 0.05) and increased the level of the anti-inflammatory cytokine IL-10 (200.96 ± 50.76 vs 54.18 ± 6.07, P < 0.05) compared with those in the SAP group. CEB increased cell viability, inhibited cytosolic Ca2+ concentration, and significantly ameliorated intracellular vacuoles and IP3 mRNA expression compared with those in the SAP group (P < 0.05). There was a trend towards decreased IP3R protein in the CEB treatment group; however, it did not reach statistical significance (P > 0.05). CONCLUSION These results at the cellular and organism levels reflect a preliminary mechanism of CEB in SAP and indicate that CEB is a suitable approach for SAP treatment.
Collapse
Affiliation(s)
- Jun Li
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Rui Zhou
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Bei-Bei Bie
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Na Huang
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Ying Guo
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Hai-Yan Chen
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Meng-Jiao Shi
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Jun Yang
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Jian Zhang
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Zong-Fang Li
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| |
Collapse
|
19
|
Dai JP, Wang QW, Su Y, Gu LM, Zhao Y, Chen XX, Chen C, Li WZ, Wang GF, Li KS. Emodin Inhibition of Influenza A Virus Replication and Influenza Viral Pneumonia via the Nrf2, TLR4, p38/JNK and NF-kappaB Pathways. Molecules 2017; 22:molecules22101754. [PMID: 29057806 PMCID: PMC6151665 DOI: 10.3390/molecules22101754] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 02/08/2023] Open
Abstract
Lasting activations of toll-like receptors (TLRs), MAPK and NF-κB pathways can support influenza A virus (IAV) infection and promote pneumonia. In this study, we have investigated the effect and mechanism of action of emodin on IAV infection using qRT-PCR, western blotting, ELISA, Nrf2 luciferase reporter, siRNA and plaque inhibition assays. The results showed that emodin could significantly inhibit IAV (ST169, H1N1) replication, reduce IAV-induced expressions of TLR2/3/4/7, MyD88 and TRAF6, decrease IAV-induced phosphorylations of p38/JNK MAPK and nuclear translocation of NF-κB p65. Emodin also activated the Nrf2 pathway, decreased ROS levels, increased GSH levelss and GSH/GSSG ratio, and upregulated the activities of SOD, GR, CAT and GSH-Px after IAV infection. Suppression of Nrf2 via siRNA markedly blocked the inhibitory effects of emodin on IAV-induced activations of TLR4, p38/JNK, and NF-κB pathways and on IAV-induced production of IL-1β, IL-6 and expression of IAV M2 protein. Emodin also dramatically increased the survival rate of mice, reduced lung edema, pulmonary viral titer and inflammatory cytokines, and improved lung histopathological changes. In conclusion, emodin can inhibit IAV replication and influenza viral pneumonia, at least in part, by activating Nrf2 signaling and inhibiting IAV-induced activations of the TLR4, p38/JNK MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Jian-Ping Dai
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Qian-Wen Wang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Yun Su
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Li-Ming Gu
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Ying Zhao
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Xiao-Xua Chen
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Cheng Chen
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Wei-Zhong Li
- Department of Veterinary Medicine, University of Maryland, College Park, and Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD 20742, USA.
| | - Ge-Fei Wang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Kang-Sheng Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
20
|
Respiratory Syncytial Virus: Infection, Detection, and New Options for Prevention and Treatment. Clin Microbiol Rev 2017; 30:277-319. [PMID: 27903593 DOI: 10.1128/cmr.00010-16] [Citation(s) in RCA: 387] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection is a significant cause of hospitalization of children in North America and one of the leading causes of death of infants less than 1 year of age worldwide, second only to malaria. Despite its global impact on human health, there are relatively few therapeutic options available to prevent or treat RSV infection. Paradoxically, there is a very large volume of information that is constantly being refined on RSV replication, the mechanisms of RSV-induced pathology, and community transmission. Compounding the burden of acute RSV infections is the exacerbation of preexisting chronic airway diseases and the chronic sequelae of RSV infection. A mechanistic link is even starting to emerge between asthma and those who suffer severe RSV infection early in childhood. In this article, we discuss developments in the understanding of RSV replication, pathogenesis, diagnostics, and therapeutics. We attempt to reconcile the large body of information on RSV and why after many clinical trials there is still no efficacious RSV vaccine and few therapeutics.
Collapse
|
21
|
Monisha BA, Kumar N, Tiku AB. Emodin and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:47-73. [DOI: 10.1007/978-3-319-41334-1_3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|