1
|
Montagner A, Arleo A, Suzzi F, D’Assoro AB, Piscaglia F, Gramantieri L, Giovannini C. Notch Signaling and PD-1/PD-L1 Interaction in Hepatocellular Carcinoma: Potentialities of Combined Therapies. Biomolecules 2024; 14:1581. [PMID: 39766289 PMCID: PMC11674819 DOI: 10.3390/biom14121581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Immunotherapy has shown significant improvement in the survival of patients with hepatocellular carcinoma (HCC) compared to TKIs as first-line treatment. Unfortunately, approximately 30% of HCC exhibits intrinsic resistance to ICIs, making new therapeutic combinations urgently needed. The dysregulation of the Notch signaling pathway observed in HCC can affect immune cell response, reducing the efficacy of cancer immunotherapy. Here, we provide an overview of how Notch signaling regulates immune responses and present the therapeutic rationale for combining Notch signaling inhibition with ICIs to improve HCC treatment. Moreover, we propose using exosomes as non-invasive tools to assess Notch signaling activation in hepatic cancer cells, enabling accurate stratification of patients who can benefit from combined strategies.
Collapse
Affiliation(s)
- Annapaola Montagner
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA;
| | - Andrea Arleo
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
| | - Fabrizia Suzzi
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
| | - Antonino B. D’Assoro
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA;
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Catia Giovannini
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
2
|
Xiu M, Zeng X, Shan R, Wen W, Li J, Wan R. Targeting Notch4 in Cancer: Molecular Mechanisms and Therapeutic Perspectives. Cancer Manag Res 2021; 13:7033-7045. [PMID: 34526819 PMCID: PMC8436177 DOI: 10.2147/cmar.s315511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/03/2021] [Indexed: 12/28/2022] Open
Abstract
The dysregulation of Notch signaling is found in many cancers and is closely related to cancer progression. As an important Notch receptor, abnormal Notch4 expression affects several tumor-cell behaviors, including stemness, the epithelial-mesenchymal transition, radio/chemoresistance and angiogenesis. In order to inhibit the oncogenic effects of Notch4 activation, several methods for targeting Notch4 signaling have been proposed. In this review, we summarize the known molecular mechanisms through which Notch4 affects cancer progression. Finally, we discuss potential Notch4-targeting therapeutic strategies as a reference for future research.
Collapse
Affiliation(s)
- Mengxi Xiu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China.,Second Clinical Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Xiaohong Zeng
- Imaging Department, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Wu Wen
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Jianfeng Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Renhua Wan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
3
|
Xiu M, Wang Y, Li B, Wang X, Xiao F, Chen S, Zhang L, Zhou B, Hua F. The Role of Notch3 Signaling in Cancer Stemness and Chemoresistance: Molecular Mechanisms and Targeting Strategies. Front Mol Biosci 2021; 8:694141. [PMID: 34195229 PMCID: PMC8237348 DOI: 10.3389/fmolb.2021.694141] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Aberrant Notch signaling profoundly affects cancer progression. Especially the Notch3 receptor was found to be dysregulated in cancer, where its expression is correlated with worse clinicopathological features and poor prognosis. The activation of Notch3 signaling is closely related to the activation of cancer stem cells (CSCs), a small subpopulation in cancer that is responsible for cancer progression. In addition, Notch3 signaling also contributes to tumor chemoresistance against several drugs, including doxorubicin, platinum, taxane, epidermal growth factor receptor (EGFR)–tyrosine kinase inhibitors (TKIs) and gemcitabine, through complex mechanisms. In this review, we mainly focus on discussing the molecular mechanisms by which Notch3 modulates cancer stemness and chemoresistance, as well as other cancer behaviors including metastasis and angiogenesis. What’s more, we propose potential treatment strategies to block Notch3 signaling, such as non-coding RNAs, antibodies and antibody-drug conjugates, providing a comprehensive reference for research on precise targeted cancer therapy.
Collapse
Affiliation(s)
- Mengxi Xiu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Yongbo Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Baoli Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xifeng Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fan Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Shoulin Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Bin Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
4
|
Han X, Xiong X, Shi X, Chen F, Li Y. Targeted sequencing of NOTCH signaling pathway genes and association analysis of variants correlated with mandibular prognathism. Head Face Med 2021; 17:17. [PMID: 34039391 PMCID: PMC8152080 DOI: 10.1186/s13005-021-00268-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction The purpose of this study was to systematically identify variants in NOTCH signaling pathway genes that correlate with mandibular prognathism (MP) in the general Chinese population. Methods Targeted sequencing of NOTCH signaling pathway genes was conducted in 199 MP individuals and 197 class I malocclusion control individuals. The associations of common and rare variants with MP, cephalometric parameters, and continuous cephalometric phenotypes were analyzed by principal component (PC) analysis. The associations between rare variants and MP were tested for each gene. Results Six SNPs, including rs415929, rs520688, and rs423023 in an exonic region of NOTCH4; rs1044006 in an exonic region of NOTCH3; rs1051415 in an exonic region of JAG1; and rs75236173 in the 3′-untranslated region (3′-UTR) of NUMB were associated with MP (P < 0.05). One common variant, rs1051415, in an exonic region of JAG1 was significantly related to PC1 (P = 3.608 × 10− 4), which explained 24.3% of the overall phenotypic variation observed and corresponded to the sagittal mandibular position towards the maxilla, ranging from a posterior positioned mandible to an anterior positioned mandible. Additionally, 41 other variants were associated with PC1–5 (P < 0.05). With respect to rare variant analysis, variants within the EP300, NCOR2, and PSEN2 gene showed an association with MP (t < 0 .05). Conclusions An association between NOTCH signaling pathway genes and MP has been identified. Supplementary Information The online version contains supplementary material available at 10.1186/s13005-021-00268-0.
Collapse
Affiliation(s)
- Xianzhuo Han
- Department of Orthodontics, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Middle Yanchang Road, 399, Shanghai, P.R. China
| | - Xueyan Xiong
- Department of Stomatology, Shanghai East Hospital Affiliated to Tongji University, Shanghai, China
| | - Xiujuan Shi
- Tongji University School of Medicine, Shanghai, China.
| | - Fengshan Chen
- Department of Orthodontics, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Middle Yanchang Road, 399, Shanghai, P.R. China.
| | - Yongming Li
- Department of Orthodontics, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Middle Yanchang Road, 399, Shanghai, P.R. China.
| |
Collapse
|
5
|
Cheng R, Wang B, Cai XR, Chen ZS, Du Q, Zhou LY, Ye JM, Chen YL. CD276 Promotes Vasculogenic Mimicry Formation in Hepatocellular Carcinoma via the PI3K/AKT/MMPs Pathway. Onco Targets Ther 2020; 13:11485-11498. [PMID: 33204103 PMCID: PMC7667184 DOI: 10.2147/ott.s271891] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose CD276 protein expression and vasculogenic mimicry (VM) formation are associated with the poor prognosis of hepatocellular carcinoma (HCC) patients. Although both the effects of CD276 and VM formation involve the activation of matrix metalloproteinases, and their relationship has not yet been explored. The following study investigated the effect of CD276 expression on VM formation and the potential mechanisms. Materials and Methods CD276 expression and VM were examined in commercial tissue microarrays by immunohistochemistry and CD31/PAS double staining. Tumor cell proliferation, invasion, migration and, tube formation were detected in vitro after transfecting HCC cell lines with an shRNA lentiviral vector against CD276. The expression of MMP14, MMP2, VE-cadherin, E-cadherin, and vimentin and MMPs activation was detected by Western blot, immunofluorescence and gelatin zymography assay. In addition, an orthotopic xenograft model of HCC cells was established in vivo, after which VM was detected, along with its marker molecules. Results CD276 expression was associated with VM and poor prognosis in HCC patients. RNA interference of CD276 reduced tumor cell proliferation, invasion, migration, and VM formation in vitro and in vivo. Furthermore, CD276 knockdown up-regulated the expression of E-cadherin but inhibited the phosphorylation of AKT, the expression of MMP14, MMP2, VE-cadherin, vimentin and the activation of MMP2 and MMP9 in HCC cell lines. Conclusion CD276 may promote VM formation by activating the PI3K/AKT/MMPs pathway and inducing the EMT process in HCC. CD276 may serve as a promising candidate for the anti-VM treatment of HCC.
Collapse
Affiliation(s)
- Rui Cheng
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, People's Republic of China
| | - Bi Wang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, People's Republic of China
| | - Xin-Ran Cai
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, People's Republic of China
| | - Zhi-Shan Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, People's Republic of China
| | - Qiang Du
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, People's Republic of China
| | - Liang-Yi Zhou
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, People's Republic of China
| | - Jing-Min Ye
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, People's Republic of China
| | - Yan-Ling Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, People's Republic of China.,Fujian Medical University Cancer Center, Fuzhou, Fujian 350001, People's Republic of China
| |
Collapse
|
6
|
Fathi Maroufi N, Taefehshokr S, Rashidi MR, Taefehshokr N, Khoshakhlagh M, Isazadeh A, Mokarizadeh N, Baradaran B, Nouri M. Vascular mimicry: changing the therapeutic paradigms in cancer. Mol Biol Rep 2020; 47:4749-4765. [PMID: 32424524 DOI: 10.1007/s11033-020-05515-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
Cancer is a major problem in the health system, and despite many efforts to effectively treat it, none has yet been fully successful. Angiogenesis and metastasis are considered as major challenges in the treatment of various cancers. Researchers have struggled to succeed with anti-angiogenesis drugs for the effective treatment of cancer, although new challenges have emerged in the treatment with the emergence of resistance to anti-angiogenesis and anti-metastatic drugs. Numerous studies have shown that different cancers can resist anti-angiogenesis drugs in a new process called vascular mimicry (VM). The studies have revealed that cells resistant to anti-angiogenesis cancer therapies are more capable of forming VMs in the in vivo and in vitro environment, although there is a link between the presence of VM and poor clinical outcomes. Given the importance of the VM in the challenges facing cancer treatment, researchers are trying to identify factors that prevent the formation of these structures. In this review article, it is attempted to provide a comprehensive overview of the molecules and main signaling pathways involved in VM phenomena, as well as the agents currently being identified as anti-VM and the role of VM in response to treatment and prognosis of cancer patients.
Collapse
Affiliation(s)
- Nazila Fathi Maroufi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON, Canada
| | - Mahdieh Khoshakhlagh
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narmin Mokarizadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Vasculogenic mimicry in carcinogenesis and clinical applications. J Hematol Oncol 2020; 13:19. [PMID: 32169087 PMCID: PMC7071697 DOI: 10.1186/s13045-020-00858-6] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Distinct from classical tumor angiogenesis, vasculogenic mimicry (VM) provides a blood supply for tumor cells independent of endothelial cells. VM has two distinct types, namely tubular type and patterned matrix type. VM is associated with high tumor grade, tumor progression, invasion, metastasis, and poor prognosis in patients with malignant tumors. Herein, we discuss the recent studies on the role of VM in tumor progression and the diverse mechanisms and signaling pathways that regulate VM in tumors. Furthermore, we also summarize the latest findings of non-coding RNAs, such as lncRNAs and miRNAs in VM formation. In addition, we review application of molecular imaging technologies in detection of VM in malignant tumors. Increasing evidence suggests that VM is significantly associated with poor overall survival in patients with malignant tumors and could be a potential therapeutic target.
Collapse
|
8
|
王 帆, 陈 锋, 胡 伟, 张 弋. [Mig- 7 gene silencing inhibits vasculogenic mimicry formation and invasion of glioma U251 cells in vitro by suppressing MEK/ERK signaling]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:566-571. [PMID: 31140421 PMCID: PMC6743935 DOI: 10.12122/j.issn.1673-4254.2019.05.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the inhibitory effects of silencing migration-inducing gene-7 (Mig-7) on vasculogenic mimicry formation, migration and invasion of human glioma cells in vitro and whether MEK/ERK signaling pathway mediates these effects. METHODS Human glioma U251 cells were infected by lentiviral vectors carrying a small interfering RNA targeting Mig-7 gene (sh-Mig-7) or a negative control shRNA (sh-NC), and real-time quantitative PCR was used to detect the expression level of Mig-7 mRNA in the cells. Three-dimensional culture and Transwell chamber invasion assay were used to observe the effect of Mig-7 gene silencing on vasculogenic mimicry formation and invasion ability of the U251 cells. Western blotting was performed to detect the changes in the protein expression levels of MEK/ERK in the infected cells. RESULTS We successfully obtained a U251 cell line with stable low expression of Mig-7 gene using RNA interference technique. Compared with the cells infected with sh-NC lentivirus and the non- infected cells, U251 cells infected with the lentiviral vector carrying sh-Mig-7 showed significantly decreased expression level of Mig-7 (P < 0.01) with obviously lowered vasculogenic mimicry formation and invasion abilities (P < 0.05). Mig-7 silencing also significantly lowered the expressions of MEK and ERK proteins in U251 cells (P < 0.05). CONCLUSIONS Silencing of Mig-7 gene inhibits vasculogenic mimicry formation and invasion of U251 cells possibly by suppressing MEK/ERK signaling, suggesting the important role of Mig-7 gene in vasculogenic mimicry formation and invasion of human glioma cells.
Collapse
Affiliation(s)
- 帆 王
- 厦门市第三医院神经外科,福建 厦门 361000Department of Neurosurgery, Third Hospital of Xiamen, Xiamen 361100, China
| | - 锋龙 陈
- 厦门市第三医院神经外科,福建 厦门 361000Department of Neurosurgery, Third Hospital of Xiamen, Xiamen 361100, China
| | - 伟鹏 胡
- 福建医科大学附属第二医院神经外科,福建 泉州 362000Department of Neurosurgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - 弋 张
- 厦门市第三医院神经外科,福建 厦门 361000Department of Neurosurgery, Third Hospital of Xiamen, Xiamen 361100, China
| |
Collapse
|