1
|
Suzuki H, Mishra S, Paul S, Hoshida Y. Molecular and immune landscape of hepatocellular carcinoma for therapeutic development. JOURNAL OF LIVER CANCER 2025; 25:9-18. [PMID: 39639434 PMCID: PMC7617546 DOI: 10.17998/jlc.2024.12.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, with an estimated 750,000 deaths in 2022. Recent emergence of molecular targeted agents and immune checkpoint inhibitors and their combination therapies have been transforming HCC care, but their prognostic impact in advanced-stage disease remains unsatisfactory. In addition, their application to early-stage disease is still an unmet need. Omics profiling studies have elucidated recurrent and heterogeneously present molecular aberrations involved in pro-cancer tumor (immune) microenvironment that may guide therapeutic strategies. Recurrent aberrations such somatic mutations in TERT promoter and TP53 have been regarded undruggable, but recent studies have suggested that these may serve as new classes of therapeutic targets. HCC markers such as alpha-fetoprotein, glypican-3, and epithelial cell adhesion molecule have also been explored as therapeutic targets. These molecular features may be utilized as biomarkers to guide the application of new approaches as companion biomarkers to maximize therapeutic benefits in patients who are likely to benefit from the therapies, while minimizing unnecessary harm in patients who will not respond. The explosive number of new agents in the pipelines have posed challenges in their clinical testing. Novel clinical trial designs guided by predictive biomarkers have been proposed to enable their efficient and cost-effective evaluation. These new developments collectively facilitate clinical translation of personalized molecular-targeted therapies in HCC and substantially improve prognosis of HCC patients.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sumit Mishra
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Subhojit Paul
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Dhanasekaran R, Suzuki H, Lemaitre L, Kubota N, Hoshida Y. Molecular and immune landscape of hepatocellular carcinoma to guide therapeutic decision-making. Hepatology 2025; 81:1038-1057. [PMID: 37300379 PMCID: PMC10713867 DOI: 10.1097/hep.0000000000000513] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
Liver cancer, primarily HCC, exhibits highly heterogeneous histological and molecular aberrations across tumors and within individual tumor nodules. Such intertumor and intratumor heterogeneities may lead to diversity in the natural history of disease progression and various clinical disparities across the patients. Recently developed multimodality, single-cell, and spatial omics profiling technologies have enabled interrogation of the intertumor/intratumor heterogeneity in the cancer cells and the tumor immune microenvironment. These features may influence the natural history and efficacy of emerging therapies targeting novel molecular and immune pathways, some of which had been deemed undruggable. Thus, comprehensive characterization of the heterogeneities at various levels may facilitate the discovery of biomarkers that enable personalized and rational treatment decisions, and optimize treatment efficacy while minimizing the risk of adverse effects. Such companion biomarkers will also refine HCC treatment algorithms across disease stages for cost-effective patient management by optimizing the allocation of limited medical resources. Despite this promise, the complexity of the intertumor/intratumor heterogeneity and ever-expanding inventory of therapeutic agents and regimens have made clinical evaluation and translation of biomarkers increasingly challenging. To address this issue, novel clinical trial designs have been proposed and incorporated into recent studies. In this review, we discuss the latest findings in the molecular and immune landscape of HCC for their potential and utility as biomarkers, the framework of evaluation and clinical application of predictive/prognostic biomarkers, and ongoing biomarker-guided therapeutic clinical trials. These new developments may revolutionize patient care and substantially impact the still dismal HCC mortality.
Collapse
Affiliation(s)
| | - Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka
| | - Lea Lemaitre
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California
| | - Naoto Kubota
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
3
|
Wu HY, Cao SY, Xu ZG, Wang T, Ji GW, Wang K. Construction of a radiogenomic signature based on endoplasmic reticulum stress for predicting prognosis and systemic combination therapy response in hepatocellular carcinoma. BMC Cancer 2025; 25:131. [PMID: 39849389 PMCID: PMC11756198 DOI: 10.1186/s12885-025-13433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/02/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide. Various factors in the tumor environment (TME) can lead to the activation of endoplasmic reticulum stress (ERS), thereby affecting the occurrence and development of tumors. The objective of our study was to develop and validate a radiogenomic signature based on ERS to predict prognosis and systemic combination therapy response. METHODS Using data from The Cancer Genome Atlas Program (TCGA) as a training cohort and data from International cancer genome consortium (ICGC) as a testing cohort. Univariate Cox regression and multivariate Cox regression analysis were used to identify prognostic-related genes and construct a model. HCC single-cell data obtained from Gene Expression Omnibus (GEO) were used to map gene signatures and explore inter-cellular signaling communications. Finally, a radiogenomic signature was used to predict the objective response rate (ORR) and overall survival (OS). RESULTS A total of four gene signatures related to ERS, including Stanniocalcin-2 (STC2), Melanoma-Associated Antigen 3 (MAGEA3), BR Serine/Threonine-Protein Kinase 2 (BRSK2), DEAD/H-Box Helicase 11 (DDX11) were identified. Macrophages were significantly different between high-risk and low-risk groups. The high-risk group showed higher targeting programmed cell death-1 (PD-1) and mutated tumor protein p53 (TP53) scores. Drug sensitivity analysis found that most sensitive drugs target the phosphatidylinositol 3-kinase/ mechanistic target of rapamycin (PI3K/mTOR) signaling pathway. Further research revealed the expression of STC2 in the endothelial cells (ECs), particularly plasmalemma vesicle associated protein (PLVAP) + ECs, and may regulate the reprogramming and function of macrophages. Furthermore, we identified nine radiomic features and established a radiogenomic signature based on ERS that can predict prognosis and response to systemic combination therapy. This signature can guide systemic combination therapy for patients with unresectable HCC. CONCLUSIONS We established an ERS prognostic model that can predict patient prognosis. We also found that ERS is closely related to the TME and is mainly manifested in the interaction between tumor-associated endothelial cells (TAEs) and tumor-associated macrophages (TAMs). Moreover, we constructed a radiogenomic signature based on the ERS. This signature can guide subsequent combination therapy for patients with unresectable HCC.
Collapse
Affiliation(s)
- Huai-Yu Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, People's Republic of China
- NHC Key laboratory of Hepatobiliary cancers, Nanjing, Jiangsu, People's Republic of China
| | - Shu-Ya Cao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, People's Republic of China
- NHC Key laboratory of Hepatobiliary cancers, Nanjing, Jiangsu, People's Republic of China
| | - Zheng-Gang Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, People's Republic of China
- NHC Key laboratory of Hepatobiliary cancers, Nanjing, Jiangsu, People's Republic of China
| | - Tian- Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, People's Republic of China
- NHC Key laboratory of Hepatobiliary cancers, Nanjing, Jiangsu, People's Republic of China
| | - Gu-Wei Ji
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, People's Republic of China.
- NHC Key laboratory of Hepatobiliary cancers, Nanjing, Jiangsu, People's Republic of China.
| | - Ke Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, People's Republic of China.
- NHC Key laboratory of Hepatobiliary cancers, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Dai H, Tao X, Shu Y, Liu F, Cheng X, Li X, Shu B, Luo H, Chen X, Cheng Z. Integrating single-cell RNA-Seq and bulk RNA-Seq data to explore the key role of fatty acid metabolism in hepatocellular carcinoma. Sci Rep 2025; 15:2077. [PMID: 39814999 PMCID: PMC11735836 DOI: 10.1038/s41598-025-85506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a predominant cause of cancer-related mortality globally, noted for its propensity towards late-stage diagnosis and scarcity of effective treatment modalities. The process of metabolic reprogramming, with a specific emphasis on lipid metabolism, is instrumental in the progression of HCC. Nevertheless, the precise mechanisms through which lipid metabolism impacts HCC and its viability as a therapeutic target have yet to be fully elucidated. In the current investigation, single-cell RNA sequencing in conjunction with weighted gene co-expression network analysis (WGCNA) was utilized to delineate lipid metabolism-related genes correlated with the prognostic outcomes of hepatocellular carcinoma (HCC). Data procurement encompassed transcriptomic and clinical datasets from HCC patients, sourced from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) repositories. Subsequent to this, consensus clustering analysis was implemented to stratify patients into distinct subgroups, contingent upon the expression patterns of lipid metabolism genes. Further analytical procedures involved functional enrichment analysis, evaluation of immune infiltration, and examination of the mutation landscape.PTGES3 was identified as a pivotal gene associated with lipid metabolism. Subsequent to its identification, cellular communication analysis was employed to assess the immunological attributes of PTGES3 within the tumor microenvironment. The functional role of PTGES3 was further corroborated through molecular docking simulations and in vitro experimental assays. We identified 27 genes associated with lipid metabolism, 18 of which exhibited significant correlation with overall survival in HCC patients. PTGES3 emerged as a central gene, demonstrating a robust association with immune cell infiltration and unfavorable prognosis. Cellular communication analysis revealed that PTGES3 exhibits the highest communication intensity with T cells, modulating the tumor microenvironment by potentiating the FN1/CD44 + MDK/NCL signaling pathway. Elevated expression of PTGES3 was linked to immunosuppressive cascades, diminished responsiveness to immunotherapy, and inferior overall survival outcomes. Molecular docking analysis indicated that etoposide, methotrexate, and doxorubicin could effectively bind to PTGES3. In vitro experiments confirmed that PTGES3 knockdown significantly impaired the proliferation, invasion, and migration of HCC cells. This study highlights the pivotal role of lipid metabolism in HCC progression and identifies PTGES3 as a potential prognostic biomarker and therapeutic target. These findings offer new insights into the development of targeted therapies for HCC, particularly in patients with high PTGES3 expression.
Collapse
Affiliation(s)
- Hua Dai
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xin Tao
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuansen Shu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Fanrong Liu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoping Cheng
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiushen Li
- Department of Traditional Chinese Medicine, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Bairui Shu
- Zhongshan Medical College, Sun Yat sen University, Clinical Medicine 2023,11 class, Guangzhou, Guangdong, China
| | - Hongcheng Luo
- Department of Urology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - XuXiang Chen
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Zhaorui Cheng
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
5
|
Du S, Wang J, Liu M, Liu R, Wang H, Zhang Y, Zhou F, Pei W. APOM Modulates the Glycolysis Process in Liver Cancer Cells by Controlling the Expression and Activity of HK2 via the Notch Pathway. Biochem Genet 2025:10.1007/s10528-024-11013-y. [PMID: 39754657 DOI: 10.1007/s10528-024-11013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025]
Abstract
The metabolic pathway of aerobic glycolysis in tumor cells has garnered significant attention in tumor research because of its high activation in cancer cells. Previous research conducted by our team has demonstrated that Apolipoprotein M (APOM) exhibits potential as a factor against liver cancer. However, further investigations are needed to elucidate the precise approach and mechanism that are involved in this process. The findings of this study demonstrated that the inhibition of APOM gene expression led to a notable increase in glucose uptake within liver cancer cells, along with increased levels of lactate dehydrogenase A (LDHA) mRNA and protein expression, as well as increased lactate and adenosine triphosphate (ATP) levels (P < 0.05). These alterations in the cellular microenvironment may be associated with a significant increase in the expression level and enzyme activity of the pivotal enzyme hexokinase 2 (HK2) (P < 0.05). Subsequent investigations revealed notable enrichment of the Notch pathway in liver cancer samples exhibiting low expression of the APOM gene. Western blot experiments demonstrated that the inhibition of APOM gene expression triggers the activation of the Notch pathway in liver cancer cells. Furthermore, the administration of a γ-secretase inhibitor (DAPT) successfully mitigated the increase in HK2 levels, glucose uptake, lactate production, and proliferation of liver cancer cells induced by the downregulation of the APOM gene (P < 0.05). In conclusion, diminished APOM expression may facilitate the progression of liver cancer by stimulating the aerobic glycolysis pathway, which is mediated by the Notch signaling pathway.
Collapse
Affiliation(s)
- Shuangqiu Du
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, P. R. China
| | - Jingtong Wang
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, P. R. China
- School of Clinical Medicine, Wannan Medical Collage, Wuhu, 241002, Anhui, P. R. China
| | - Miaomiao Liu
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, P. R. China
| | - Rong Liu
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, P. R. China
| | - Hui Wang
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, P. R. China
| | - Yao Zhang
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, P. R. China
| | - Fengcang Zhou
- Basic Teaching Department of Morphology Teaching and Research Section, Anhui College of Traditional Chinese Medicine, Wuhu, 241002, Anhui, P. R. China.
| | - Wenjun Pei
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, P. R. China.
| |
Collapse
|
6
|
Jiang B, Ye X, Wang W, He J, Zhang S, Zhang S, Bao L, Xu X. Comprehensive assessment of regulatory T-cells-related scoring system for predicting the prognosis, immune microenvironment and therapeutic response in hepatocellular carcinoma. Aging (Albany NY) 2024; 16:5288-5310. [PMID: 38461439 PMCID: PMC11006487 DOI: 10.18632/aging.205649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/23/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION Regulatory T cells (Tregs) play important roles in tumor immunosuppression and immune escape. The aim of the present study was to construct a novel Tregs-associated biomarker for the prediction of tumour immune microenvironment (TIME), clinical outcomes, and individualised treatment in hepatocellular carcinoma (HCC). METHODS Single-cell sequencing data were obtained from the three independent cohorts. Cox and LASSO regression were utilised to develop the Tregs Related Scoring System (TRSSys). GSE140520, ICGC-LIRI and CHCC cohorts were used for the validation of TRSSys. Kaplan-Meier, ROC, and Cox regression were utilised for the evaluation of TRSSys. The ESTIMATE, TIMER 2.0, and ssGSEA algorithm were utilised to determine the value of TRSSys in predicting the TIME. GSVA, GO, KEGG, and TMB analyses were used for mechanistic exploration. Finally, the value of TRSSys in predicting drug sensitivity was evaluated based on the oncoPredict algorithm. RESULTS Comprehensive validation showed that TRSSys had good prognostic predictive efficacy and applicability. Additionally, ssGSEA, TIMER and ESTIMATE algorithm suggested that TRSSys could help to distinguish different TIME subtypes and determine the beneficiary population of immunotherapy. Finally, the oncoPredict algorithm suggests that TRSSys provides a basis for individualised treatment. CONCLUSIONS TRSSys constructed in the current study is a novel HCC prognostic prediction biomarker with good predictive efficacy and stability. Additionally, risk stratification based on TRSSys can help to identify the TIME landscape subtypes and provide a basis for individualized treatment options.
Collapse
Affiliation(s)
- Bitao Jiang
- Department of Hematology and Oncology, Beilun District People’s Hospital, Ningbo, China
| | - Xiaojuan Ye
- Radiotherapy Department, The Second People’s Hospital of Wuhu, Wuhu, China
| | - Wenjuan Wang
- Department of Hematology and Oncology, Beilun District People’s Hospital, Ningbo, China
| | - Jiajia He
- Department of Hematology and Oncology, Ningbo Yinzhou No. 2 Hospital, Ningbo, China
| | - Shuyan Zhang
- Pharmacy Department, Beilun District People’s Hospital, Ningbo, China
| | - Song Zhang
- Department of Hematology and Oncology, Beilun District People’s Hospital, Ningbo, China
| | - Lingling Bao
- Department of Hematology and Oncology, Beilun District People’s Hospital, Ningbo, China
| | - Xin Xu
- Department of Hematology and Oncology, Beilun District People’s Hospital, Ningbo, China
| |
Collapse
|
7
|
Differential Response to Sorafenib Administration for Advanced Hepatocellular Carcinoma. Biomedicines 2022; 10:biomedicines10092277. [PMID: 36140381 PMCID: PMC9496215 DOI: 10.3390/biomedicines10092277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 01/27/2023] Open
Abstract
Sorafenib has been used to treat advanced hepatocellular carcinoma (aHCC). However, there is no evidence for a response of different target lesions to sorafenib administration. Therefore, we aimed to evaluate the effect of sorafenib on various aHCC target lesions. The outcomes of sorafenib treatment on aHCC, i.e., treatment response for all Child A status patients receiving the drug, were analyzed. Of 377 aHCC patients, 73 (19.3%) had complete/partial response to sorafenib, while 134 (35.4%) and 171 (45.2) had a stable or progressive disease, respectively, in the first six months. Of the evaluated metastatic lesions, 149 (39.4%), 48 (12.7%), 123 (32.5%), 98 (25.9%), 83 (22.0%), and 45 (11.9%) were present in liver, bone, lung, portal/hepatic vein thrombus, lymph nodes, and peritoneum, respectively. The overall survival and duration of treatment were 16.9 ± 18.3 and 8.1 ± 10.5 months (with median times of 11.4 and 4.6, respectively). Our analysis showed poor outcomes in macroscopic venous thrombus and bone, higher AFP, and multiple target lesions. ALBI grade A had a better outcome. Sorafenib administration showed good treatment outcomes in selected situations. PD patients with thrombus or multiple metastases should be considered for sorafenib second-line treatment. The ALBI liver function test should be selected as a treatment criterion.
Collapse
|
8
|
Peng G, Chai H, Ji W, Lu Y, Wu S, Zhao H, Li P, Hu Q. Correlating genomic copy number alterations with clinicopathologic findings in 75 cases of hepatocellular carcinoma. BMC Med Genomics 2021; 14:150. [PMID: 34103027 PMCID: PMC8185937 DOI: 10.1186/s12920-021-00998-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 06/02/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Oligonucleotide array comparative genomic hybridization (aCGH) analysis has been used for detecting somatic copy number alterations (CNAs) in various types of tumors. This study aimed to assess the clinical utility of aCGH for cases of hepatocellular carcinoma (HCC) and to evaluate the correlation between CNAs and clinicopathologic findings. METHODS aCGH was performed on 75 HCC cases with paired DNA samples from tumor and adjacent nontumor tissues. Survival outcomes from these cases were analyzed based on Barcelona-Clinic Liver Cancer Stage (BCLC), Edmondson-Steiner grade (E-S), and recurrence status. Correlation of CNAs with clinicopathologic findings was analyzed by Wilcoxon rank test and clustering vs. K means. RESULTS The survival outcomes indicated that BCLC stages and recurrence status could be predictors and E-S grades could be a modifier for HCC. The most common CNAs involved gains of 1q and 8q and a loss of 16q (50%), losses of 4q and 17p and a gain of 5p (40%), and losses of 8p and 13q (30%). Analyses of genomic profiles and clusters identified that losses of 4q13.2q35.2 and 10q22.3q26.13 seen in cases of stage A, grade III and nonrecurrence were likely correlated with good survival, while loss of 1p36.31p22.1 and gains of 2q11.2q21.2 and 20p13p11.1 seen in cases of stage C, grade III and recurrence were possibly correlated with worst prognosis. CONCLUSIONS These results indicated that aCGH analysis could be used to detect recurrent CNAs and involved key genes and pathways in patients with HCC. Further analysis on a large case series to validate the correlation of CNAs with clinicopathologic findings of HCC could provide information to interpret CNAs and predict prognosis.
Collapse
Affiliation(s)
- Gang Peng
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, USA
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA
| | - Hongyan Chai
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA
| | - Weizhen Ji
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA
| | - Yufei Lu
- Department of Cell Biology and Genetics, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shengming Wu
- Department of Pathology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Hongyu Zhao
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, USA
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA
| | - Peining Li
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA.
| | - Qiping Hu
- Department of Cell Biology and Genetics, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
9
|
Nia A, Dhanasekaran R. Genomic Landscape of HCC. CURRENT HEPATOLOGY REPORTS 2020; 19:448-461. [PMID: 33816052 PMCID: PMC8015384 DOI: 10.1007/s11901-020-00553-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a leading cause of cancer related mortality in the world and it has limited treatment options. Understanding the molecular drivers of HCC is important to develop novel biomarkers and therapeutics. PURPOSE OF REVIEW HCC arises in a complex background of chronic hepatitis, fibrosis and liver regeneration which lead to genomic changes. Here, we summarize studies that have expanded our understanding of the molecular landscape of HCC. RECENT FINDINGS Recent technological advances in next generation sequencing (NGS) have elucidated specific genetic and molecular programs involved in hepatocarcinogenesis. We summarize the major somatic mutations and epigenetic changes have been identified in NGS-based studies. We also describe promising molecular therapies and immunotherapies which target specific genetic and epigenetic molecular events. SUMMARY The genomic landscape of HCC is incredibly complex and heterogeneous. Promising new developments are helping us decipher the molecular drivers of HCC and leading to new therapies.
Collapse
|
10
|
Tuoya AD, Wang DX, Xing YS, Liu RJ, Hu YX, Zhang MD, Bai TY, Lv XL, Li J, Chang FH. Relationship between Methylation of FHIT and CDH13 Gene Promoter Region and Liver Cancer. Curr Med Sci 2020; 40:502-509. [PMID: 32474857 DOI: 10.1007/s11596-020-2202-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/04/2020] [Indexed: 01/27/2023]
Abstract
In order to demonstrate the relationship between methylation of fragile histidine triad (FHIT) and T-cadherin/H-cadherin (CDH13) genes and liver cancer, the methylation status of FHIT and CDH13 was detected in healthy individuals and in Mongolian and Han patients with liver cancer. The phenol-chloroform method was used to extract genomic DNA. The methylation specific polymerase chain reaction method was applied to detect the methylation status of FHIT and CDH13. The relationship between smoking and alcohol consumption and gene (FHIT and CDH13) methylation was analyzed. There was significant difference in methylation rate of FHIT (72.67%, 34.67%) and CDH13 (72.0%, 28.0%) between liver cancer patients and healthy individuals of Mongolian descent (P<0.05), as well as that of FHIT (68%, 30.67%) and CDH13 (64%, 26%) between liver cancer patients and healthy individuals of Han individuals (P<0.05). There was also a relationship between smoking and drinking and the methylation of FHIT and CDH13 (P<0.05). Thus, the methylation of FHIT and CDH13 had a relationship with liver cancer incidence. Smoking and alcohol ingestion may promote the methylation of FHIT and CDH13.
Collapse
Affiliation(s)
- Ao-Dun Tuoya
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010010, China
| | - Dong-Xue Wang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Yu-Shu Xing
- The Center for New Drug Safety Evaluation and Research of Inner Mongolia Medical University, Hohhot, 010010, China.,Inner Mongolia Research Center for Drug Screening, Hohhot, 010110, China
| | - Rui-Jun Liu
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010010, China
| | - Yu-Xia Hu
- The Center for New Drug Safety Evaluation and Research of Inner Mongolia Medical University, Hohhot, 010010, China.,Inner Mongolia Research Center for Drug Screening, Hohhot, 010110, China
| | - Meng-di Zhang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China.,Inner Mongolia Research Center for Drug Screening, Hohhot, 010110, China
| | - Tu-Ya Bai
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China.,Inner Mongolia Research Center for Drug Screening, Hohhot, 010110, China
| | - Xiao-Li Lv
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China.,Inner Mongolia Research Center for Drug Screening, Hohhot, 010110, China
| | - Jun Li
- Inner Mongolia Research Center for Drug Screening, Hohhot, 010110, China
| | - Fu-Hou Chang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China. .,The Center for New Drug Safety Evaluation and Research of Inner Mongolia Medical University, Hohhot, 010010, China. .,Inner Mongolia Research Center for Drug Screening, Hohhot, 010110, China.
| |
Collapse
|