1
|
Tarcha Z, Konstantinoff KS, Ince S, Fraum TJ, Sadowski EA, Bhosale PR, Derenoncourt PR, Zulfiqar M, Shetty AS, Ponisio MR, Mhlanga JC, Itani M. Added Value of FDG PET/MRI in Gynecologic Oncology: A Pictorial Review. Radiographics 2023; 43:e230006. [PMID: 37410624 DOI: 10.1148/rg.230006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Fluorine 18-fluorodeoxyglucose (FDG) PET and MRI independently play a valuable role in the management of patients with gynecologic malignancies, particularly endometrial and cervical cancer. The PET/MRI hybrid imaging technique combines the metabolic information obtained from PET with the excellent soft-tissue resolution and anatomic details provided by MRI in a single examination. MRI is the modality of choice for assessment of local tumor extent in the pelvis, whereas PET is used to assess for local-regional spread and distant metastases. The authors discuss the added value of FDG PET/MRI in imaging gynecologic malignancies of the pelvis, with a focus on the role of FDG PET/MRI in diagnosis, staging, assessing treatment response, and characterizing complications. PET/MRI allows better localization and demarcation of the extent of disease, characterization of lesions and involvement of adjacent organs and lymph nodes, and improved differentiation of benign from malignant tissues, as well as detection of the presence of distant metastasis. It also has the advantages of decreased radiation dose and a higher signal-to-noise ratio of a prolonged PET examination of the pelvis contemporaneous with MRI. The authors provide a brief technical overview of PET/MRI, highlight how simultaneously performed PET/MRI can improve stand-alone MRI and PET/CT in gynecologic malignancies, provide an image-rich review to illustrate practical and clinically relevant applications of this imaging technique, and review common pitfalls encountered in clinical practice. ©RSNA, 2023 Quiz questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Ziad Tarcha
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St. Louis, MO, 63110-8131 (Z.T., K.S.K., S.I., T.J.F., P.R.D., A.S.S., M.R.P., J.C.M., M.I.); Department of Radiology, Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, Wis (E.A.S.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (P.R.B.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (M.Z.)
| | - Katerina S Konstantinoff
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St. Louis, MO, 63110-8131 (Z.T., K.S.K., S.I., T.J.F., P.R.D., A.S.S., M.R.P., J.C.M., M.I.); Department of Radiology, Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, Wis (E.A.S.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (P.R.B.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (M.Z.)
| | - Semra Ince
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St. Louis, MO, 63110-8131 (Z.T., K.S.K., S.I., T.J.F., P.R.D., A.S.S., M.R.P., J.C.M., M.I.); Department of Radiology, Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, Wis (E.A.S.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (P.R.B.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (M.Z.)
| | - Tyler J Fraum
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St. Louis, MO, 63110-8131 (Z.T., K.S.K., S.I., T.J.F., P.R.D., A.S.S., M.R.P., J.C.M., M.I.); Department of Radiology, Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, Wis (E.A.S.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (P.R.B.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (M.Z.)
| | - Elizabeth A Sadowski
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St. Louis, MO, 63110-8131 (Z.T., K.S.K., S.I., T.J.F., P.R.D., A.S.S., M.R.P., J.C.M., M.I.); Department of Radiology, Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, Wis (E.A.S.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (P.R.B.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (M.Z.)
| | - Priya R Bhosale
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St. Louis, MO, 63110-8131 (Z.T., K.S.K., S.I., T.J.F., P.R.D., A.S.S., M.R.P., J.C.M., M.I.); Department of Radiology, Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, Wis (E.A.S.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (P.R.B.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (M.Z.)
| | - Paul-Robert Derenoncourt
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St. Louis, MO, 63110-8131 (Z.T., K.S.K., S.I., T.J.F., P.R.D., A.S.S., M.R.P., J.C.M., M.I.); Department of Radiology, Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, Wis (E.A.S.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (P.R.B.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (M.Z.)
| | - Maria Zulfiqar
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St. Louis, MO, 63110-8131 (Z.T., K.S.K., S.I., T.J.F., P.R.D., A.S.S., M.R.P., J.C.M., M.I.); Department of Radiology, Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, Wis (E.A.S.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (P.R.B.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (M.Z.)
| | - Anup S Shetty
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St. Louis, MO, 63110-8131 (Z.T., K.S.K., S.I., T.J.F., P.R.D., A.S.S., M.R.P., J.C.M., M.I.); Department of Radiology, Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, Wis (E.A.S.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (P.R.B.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (M.Z.)
| | - Maria R Ponisio
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St. Louis, MO, 63110-8131 (Z.T., K.S.K., S.I., T.J.F., P.R.D., A.S.S., M.R.P., J.C.M., M.I.); Department of Radiology, Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, Wis (E.A.S.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (P.R.B.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (M.Z.)
| | - Joyce C Mhlanga
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St. Louis, MO, 63110-8131 (Z.T., K.S.K., S.I., T.J.F., P.R.D., A.S.S., M.R.P., J.C.M., M.I.); Department of Radiology, Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, Wis (E.A.S.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (P.R.B.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (M.Z.)
| | - Malak Itani
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St. Louis, MO, 63110-8131 (Z.T., K.S.K., S.I., T.J.F., P.R.D., A.S.S., M.R.P., J.C.M., M.I.); Department of Radiology, Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, Wis (E.A.S.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (P.R.B.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (M.Z.)
| |
Collapse
|
2
|
Virarkar M, Vulasala SS, Calimano-Ramirez L, Singh A, Lall C, Bhosale P. Current Update on PET/MRI in Gynecological Malignancies-A Review of the Literature. Curr Oncol 2023; 30:1077-1105. [PMID: 36661732 PMCID: PMC9858166 DOI: 10.3390/curroncol30010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Early detection of gynecological malignancies is vital for patient management and prolonging the patient's survival. Molecular imaging, such as positron emission tomography (PET)/computed tomography, has been increasingly utilized in gynecological malignancies. PET/magnetic resonance imaging (MRI) enables the assessment of gynecological malignancies by combining the metabolic information of PET with the anatomical and functional information from MRI. This article will review the updated applications of PET/MRI in gynecological malignancies.
Collapse
Affiliation(s)
- Mayur Virarkar
- Department of Diagnostic Radiology, University of Florida College of Medicine, 655 West 8th Street, C90, 2nd Floor, Clinical Center, Jacksonville, FL 32209, USA
| | - Sai Swarupa Vulasala
- Department of Internal Medicine, East Carolina University Health Medical Center, 600 Moye Blvd., Greenville, NC 27834, USA
| | - Luis Calimano-Ramirez
- Department of Diagnostic Radiology, University of Florida College of Medicine, 655 West 8th Street, C90, 2nd Floor, Clinical Center, Jacksonville, FL 32209, USA
| | - Anmol Singh
- Department of Diagnostic Radiology, University of Florida College of Medicine, 655 West 8th Street, C90, 2nd Floor, Clinical Center, Jacksonville, FL 32209, USA
| | - Chandana Lall
- Department of Diagnostic Radiology, University of Florida College of Medicine, 655 West 8th Street, C90, 2nd Floor, Clinical Center, Jacksonville, FL 32209, USA
| | - Priya Bhosale
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| |
Collapse
|
3
|
PET/MR imaging in gynecologic cancer: tips for differentiating normal gynecologic anatomy and benign pathology versus cancer. Abdom Radiol (NY) 2022; 47:3189-3204. [PMID: 34687323 DOI: 10.1007/s00261-021-03264-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 01/18/2023]
Abstract
Positron emission tomography/magnetic resonance imaging (PET/MR) is used in the pre-treatment and surveillance settings to evaluate women with gynecologic malignancies, including uterine, cervical, vaginal and vulvar cancers. PET/MR combines the excellent spatial and contrast resolution of MR imaging for gynecologic tissues, with the functional metabolic information of PET, to aid in a more accurate assessment of local disease extent and distant metastatic disease. In this review, the optimal protocol and utility of whole-body PET/MR imaging in patients with gynecologic malignancies will be discussed, with an emphasis on the advantages of PET/MR over PET/CT and how to differentiate normal or benign gynecologic tissues from cancer in the pelvis.
Collapse
|
4
|
Yu Y, Zhang L, Sultana B, Wang B, Sun H. Diagnostic value of integrated 18F-FDG PET/MRI for staging of endometrial carcinoma: comparison with PET/CT. BMC Cancer 2022; 22:947. [PMID: 36050751 PMCID: PMC9438318 DOI: 10.1186/s12885-022-10037-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Purpose To explore the diagnostic value of integrated positron emission tomography/magnetic resonance imaging (PET/MRI) for the staging of endometrial carcinoma and to investigate the associations between quantitative parameters derived from PET/MRI and clinicopathological characteristics of endometrial carcinoma. Methods Altogether, 57 patients with endometrial carcinoma who underwent PET/MRI and PET/computed tomography (PET/CT) preoperatively were included. Diagnostic performance of PET/MRI and PET/CT for staging was compared by three readers. Associations between PET/MRI quantitative parameters of primary tumor lesions and clinicopathological characteristics of endometrial carcinoma were analyzed. Histopathological results were used as the standard. Results The overall accuracy of the International Federation of Gynecology and Obstetrics (FIGO) staging for PET/MRI and PET/CT was 86.0% and 77.2%, respectively. PET/MRI had higher accuracy in diagnosing myometrial invasion and cervical invasion and an equivalent accuracy in diagnosing pelvic lymph node metastasis against PET/CT, although without significance. All PET/MRI quantitative parameters were significantly different between stage I and stage III tumors. Only SUVmax/ADCmin were significantly different between stage I and II tumors. No parameters were significantly different between stage II and III tumors. The SUVmax/ADCmin in the receiving operating characteristic (ROC) curve had a higher area under the ROC curve for differentiating stage I tumors and other stages of endometrial carcinoma. Conclusions PET/MRI had a higher accuracy for the staging of endometrial carcinoma, mainly for FIGO stage I tumors compared to PET/CT. PET/MRI quantitative parameters, especially SUVmax/ADCmin, were associated with tumor stage and other clinicopathological characteristics. Hence, PET/MRI may be a valuable imaging diagnostic tool for preoperative staging of endometrial carcinoma.
Collapse
Affiliation(s)
- Yang Yu
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street No36, Heping District, Shenyang, 110004, China.,Department of Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Liaoning Provincial Key Laboratory of Medical Imaging, Shenyang, 110004, China
| | - Le Zhang
- Department of Radiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266011, China
| | - Bilkis Sultana
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street No36, Heping District, Shenyang, 110004, China
| | - Bo Wang
- Department of Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hongzan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street No36, Heping District, Shenyang, 110004, China. .,Department of Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China. .,Liaoning Provincial Key Laboratory of Medical Imaging, Shenyang, 110004, China.
| |
Collapse
|
5
|
Yokoo S, Zeng F, Nogami M, Ueno YR, Murakami T. FDG PET/MRI in Synchronous Uterine Adenocarcinoma and Leiomyosarcoma. Clin Nucl Med 2022; 47:e452-e454. [PMID: 35353760 DOI: 10.1097/rlu.0000000000004144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
ABSTRACT A 52-year-old woman with a rapidly growing uterine tumor suspected of uterine sarcoma underwent 18F-FDG PET/MRI, revealing a myometrial mass and an endometrial lesion, suggesting dual primary neoplasms. Based on the PET/MRI findings, we changed the intraoperative procedure to determine the necessity of pelvic lymphadenectomy. PET/MRI was useful in diagnosing and differentiating between 2 malignant neoplasms in the uterus compared with PET/CT, due to MRI's high contrast resolution and precise fusion due to the simultaneous acquisition.
Collapse
Affiliation(s)
- Shiho Yokoo
- From the Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | |
Collapse
|
6
|
Abstract
This review article summarizes the clinical applications of established and emerging PET tracers in the evaluation of the 5 most common gynecologic malignancies: endometrial, ovarian, cervical, vaginal, and vulvar cancers. Emphasis is given to 2-deoxy-2-[18F]fluoro-d-glucose as the most widely used and studied tracer, with additional clinical tracers also explored. The common imaging protocols are discussed, including standard dose ranges and uptake times, established roles, as well as the challenges and future directions of these imaging techniques. The key points are emphasized with images from selected cases.
Collapse
Affiliation(s)
- Saul N Friedman
- Division of Nuclear Medicine, Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, St Louis, MO 63110, USA
| | - Malak Itani
- Section of Abdominal Imaging, Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, St Louis, MO 63110, USA
| | - Farrokh Dehdashti
- Division of Nuclear Medicine, Edward Mallinckrodt Institute of Radiology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 510 South Kingshighway Boulevard, St Louis, MO 63110, USA.
| |
Collapse
|
7
|
Chen S, Gu Y, Yu H, Chen X, Cao T, Hu L, Shi H. NEMA NU2-2012 performance measurements of the United Imaging uPMR790: an integrated PET/MR system. Eur J Nucl Med Mol Imaging 2021; 48:1726-1735. [PMID: 33388972 DOI: 10.1007/s00259-020-05135-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE In this paper, we aimed to evaluate the positron emission tomography (PET) performance of, to the best of our knowledge, the third commercially available whole-body integrated PET/magnetic resonance (MR) system. METHODS The PET system performance was measured following the NEMA standards with and without simultaneous MR operation. PET spatial resolution, sensitivity, scatter fraction, count-rate performance, accuracy of count losses and random corrections, image quality, and time-of-flight (TOF) resolution were quantitatively evaluated. Clinical scans were acquired at the PET/MR system and compared with images acquired at a PET/CT with the same digital detector technology. RESULTS Measurement results of essential PET performance were reported in the form of MR idle (MR pulsing). The axial, radial, and tangential spatial resolutions were measured as 2.72 mm (2.73 mm), 2.86 mm (2.85 mm), and 2.81 mm (2.82 mm) FWHM, respectively, at 1 cm radial offset. The NECR peak was measured as 129.2 kcps (129.5 kcps) at 14.7 kBq mL-1 (14.2 kBq mL-1). The scatter fraction at NECR peak was 37.9% (36.5%), and the maximum slice error below NECR was 4.1% (4.5%). Contrast recovery coefficients ranged from 51.8% (52.3%) for 10 mm hot sphere to 87.3% (87.2%) for 37 mm cold sphere. TOF resolution at 5.3 kBq mL-1 was measured at 535 ps (540 ps). With point source, TOF was measured to be 474 ps (485 ps). Clinical scans revealed similar image quality from the PET/MR and the comparative PET/CT system. CONCLUSION The PET performance of the newly introduced integrated PET/MR system is not significantly affected by the simultaneous operation of an MR sequence (2-point DIXON sequence). Measurement results demonstrate comparable performance with other state-of-the-art PET/MR systems. The clinical benefits of high spatial resolution and long axial coverage remain to be further evaluated in specific clinical imaging applications.
Collapse
Affiliation(s)
- Shuguang Chen
- Zhongshan Hospital, Fudan University, 1609 Xietu Road, Shanghai, 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, China
| | - Yushen Gu
- Zhongshan Hospital, Fudan University, 1609 Xietu Road, Shanghai, 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, China
| | - Haojun Yu
- Zhongshan Hospital, Fudan University, 1609 Xietu Road, Shanghai, 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, China
| | - Xin Chen
- United Imaging Healthcare Co., Ltd., Shanghai, China
| | - Tuoyu Cao
- United Imaging Healthcare Co., Ltd., Shanghai, China
| | - Lingzhi Hu
- United Imaging Healthcare Co., Ltd., Shanghai, China
| | - Hongcheng Shi
- Zhongshan Hospital, Fudan University, 1609 Xietu Road, Shanghai, 200032, China.
- Institute of Nuclear Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Virarkar M, Ganeshan D, Gulati AT, Palmquist S, Iyer R, Bhosale P. Diagnostic performance of PET/CT and PET/MR in the management of ovarian carcinoma-a literature review. Abdom Radiol (NY) 2021; 46:2323-2349. [PMID: 33175199 DOI: 10.1007/s00261-020-02847-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022]
Abstract
Ovarian cancer is a challenging disease. It often presents at an advanced stage with frequent recurrence despite optimal management. Accurate staging and restaging are critical for improving treatment outcomes and determining the prognosis. Imaging is an indispensable component of ovarian cancer management. Hybrid imaging modalities, including positron emission tomography/computed tomography (PET/CT) and PET/magnetic resonance imaging (MRI), are emerging as potential non-invasive imaging tools for improved management of ovarian cancer. This review article discusses the role of PET/CT and PET/MRI in ovarian cancer.
Collapse
Affiliation(s)
- Mayur Virarkar
- Department of Diagnostic Radiology, Unit 1476, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Dhakshinamoorthy Ganeshan
- Department of Diagnostic Radiology, Unit 1476, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Anjalie Tara Gulati
- BS, Anthropology and Global Health, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Sarah Palmquist
- Department of Diagnostic Radiology, Unit 1476, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Revathy Iyer
- Department of Diagnostic Radiology, Unit 1476, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Priya Bhosale
- Department of Diagnostic Radiology, Unit 1476, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
9
|
Ward RD, Amorim B, Li W, King J, Umutlu L, Groshar D, Harisinghani M, Catalano O. Abdominal and pelvic 18F-FDG PET/MR: a review of current and emerging oncologic applications. Abdom Radiol (NY) 2021; 46:1236-1248. [PMID: 32949272 DOI: 10.1007/s00261-020-02766-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
Positron emission tomography (PET) using fluorodeoxyglucose (18F-FDG) combined with magnetic resonance imaging (MR) is an emerging hybrid modality that has shown utility in evaluating abdominal and pelvic disease entities. Together, the high soft tissue contrast and metabolic/functional imaging capabilities make this modality ideal for oncologic imaging in many organ systems. Its clinical utility continues to evolve and future research will help solidify its role in oncologic imaging. In this manuscript, we aim to (1) provide an overview of the various PET/MR systems, describing the strengths and weaknesses of each system, and (2) review the oncologic applications for 18F-FDG PET/MR in the abdomen and pelvis.
Collapse
Affiliation(s)
- Ryan D Ward
- Cleveland Clinic, Department of Abdominal Imaging, 9500 Euclid Ave, L10, Cleveland, OH, 44195, USA
| | - Barbara Amorim
- Division of Nuclear Medicine, University of Campinas, Rua Vital Brasil 251, Campinas, Brazil
| | - Weier Li
- Department of Abdominal Imaging, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Joseph King
- Department of Abdominal Imaging, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - David Groshar
- Assuta Medical Center, Habrzel 20, 6971028, Tel-Aviv, Israel
- Sackler School of Medicine, Tel-Aviv, Israel
| | - Mukesh Harisinghani
- Department of Abdominal Imaging, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Onofrio Catalano
- Department of Abdominal Imaging, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA, 02114, USA.
| |
Collapse
|
10
|
Staley SA, Tucker KR, Gehrig PA, Clark LH. Accuracy of preoperative cross-sectional imaging in cervical cancer patients undergoing primary radical surgery. Gynecol Oncol 2020; 160:384-388. [PMID: 33213900 DOI: 10.1016/j.ygyno.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 11/01/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE We aim to describe the false negative (FN) and false positive (FP) rates of preoperative cross-sectional imaging (PCI) prior to radical surgery for cervical cancer. METHODS A retrospective cohort study of patients who underwent radical hysterectomy for early-stage cervical cancer from January 2010 until December 2017 at a single tertiary care center was performed. Patients were included if they underwent preoperative PCI and radical surgery. Patient demographics and clinicopathologic information were recorded from medical record review. Descriptive statistics were used. RESULTS Overall, 106 patients met inclusion criteria. Eighty-four percent (89/106) of patients had no suspicion for metastatic disease on PCI, while 16% (17/106) had suspicion for metastatic disease. Of the 89 without suspicion for metastatic disease on PCI, 16% (14/89) had a false negative study with metastatic disease identified on final surgical pathology. False negative rates by modality were 16% (11/70) for PET/CT and 6% (2/33) for diagnostic CT. Of the 17 cases with suspicion for metastatic disease on imaging, 53% (9/17) were false positive studies with no metastatic disease identified histologically. False positive rates by modality were 7% (5/70) for PET/CT and 12% (4/33) for diagnostic CT. CONCLUSION PCI is a tool to help identify patients who are optimal candidates for radical surgery. In this sample, the false negative rate was 16%, and false positive rate was 53% for PCI among women who underwent primary radical surgery. Further study is needed to explore preoperative testing that may more accurately identify optimal surgical candidates.
Collapse
Affiliation(s)
- S Allison Staley
- Gynecologic Oncologist, Rocky Mountain Gynecologic Oncology, Swedish Medical Center, Denver, CO, United States of America.
| | - Katherine R Tucker
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Paola A Gehrig
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Leslie H Clark
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|
11
|
Nguyen NC, Beriwal S, Moon CH, D'Ardenne N, Mountz JM, Furlan A, Muthukrishnan A, Rangaswamy B. Diagnostic Value of FDG PET/MRI in Females With Pelvic Malignancy-A Systematic Review of the Literature. Front Oncol 2020; 10:519440. [PMID: 33123460 PMCID: PMC7571667 DOI: 10.3389/fonc.2020.519440] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/28/2020] [Indexed: 11/13/2022] Open
Abstract
Hybrid imaging with F-18 fludeoxyglucose positron emission tomography/magnetic resonance imaging (FDG PET/MRI) has increasing clinical applications supplementing conventional ultrasound, CT, and MRI imaging as well as hybrid PET/CT imaging in assessing cervical, endometrial, and ovarian cancer. This article summarizes the existing literature and discusses the emerging role of hybrid PET/MRI in gynecologic malignancies. Thus, far, the published literature on the applications of FDG PET/MRI shows that it can have a significant impact on patient management by improving the staging of the cancers compared with PET/CT, influencing clinical decision and treatment strategy. For disease restaging, current literature indicates that PET/MRI performs equivalently to PET/CT. There appears to be a mild-moderate inverse correlation between standard-uptake-value (SUV) and apparent-diffusion-coefficient (ADC) values, which could be used to predict tumor grading and risk stratification. It remains to be seen as to whether multi-parametric PET/MRI imaging could prove valuable for prognostication and outcome. PET/MRI provides the opportunity for reduced radiation exposure, which is particularly relevant for a young female in need of multiple scans for treatment monitoring and follow-up. Fast acquisition protocols and optimized methods for attenuation correction are still evolving. Major limitations of PET/MRI remains such as suboptimal detection of small pulmonary nodules and lack of utility for radiation treatment planning, which pose an impediment in making PET/MRI a viable one-stop-shop imaging option to compete with PET/CT.
Collapse
Affiliation(s)
- Nghi Co Nguyen
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sushil Beriwal
- Department of Radiation Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chan-Hong Moon
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nicholas D'Ardenne
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - James M Mountz
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alessandro Furlan
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ashok Muthukrishnan
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | | |
Collapse
|
12
|
Applications of Hybrid PET/Magnetic Resonance Imaging in Central Nervous System Disorders. PET Clin 2020; 15:497-508. [DOI: 10.1016/j.cpet.2020.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
13
|
Bian LH, Wang M, Gong J, Liu HH, Wang N, Wen N, Fan WS, Xu BX, Wang MY, Ye MX, Meng YG. Comparison of integrated PET/MRI with PET/CT in evaluation of endometrial cancer: a retrospective analysis of 81 cases. PeerJ 2019; 7:e7081. [PMID: 31341726 PMCID: PMC6637922 DOI: 10.7717/peerj.7081] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 05/06/2019] [Indexed: 01/21/2023] Open
Abstract
Background The objective of this study was to compare the diagnostic value of integrated PET/MRI with PET/CT for assessment of regional lymph node metastasis and deep myometrial invasion detection of endometrial cancer. Methods Eighty-one patients with biopsy-proven endometrial cancer underwent preoperative PET/CT (n = 37) and integrated PET/MRI (n = 44) for initial staging. The diagnostic performance of PET/CT and integrated PET/MRI for assessing the extent of the primary tumor and metastasis to the regional lymph nodes was evaluated by two experienced readers. Histopathological and follow-up imaging results were used as the gold standard. McNemar’s test was employed for statistical analysis. Results Integrated PET/MRI and PET/CT both detected 100% of the primary tumors. Integrated PET/MRI proved significantly more sensitivity and specificity than PET/CT in regional lymph node metastasis detection (P = 0.015 and P < 0.001, respectively). The overall accuracy of myometrial invasion detection for PET/CT and Integrated PET/MRI was 45.9% and 81.8%, respectively. Integrated PET/MRI proved significantly more accurate than PET/CT (P < 0.001). Conclusion Integrated PET/MRI, which complements the individual advantages of MRI and PET, is a valuable technique for the assessment of the lymph node metastasis and myometrial invasion in patients with endometrial cancer.
Collapse
Affiliation(s)
- Li-Hua Bian
- Department of Gynecology and Obstetrics, General Hospital of PLA, Beijing, China
| | - Min Wang
- Department of Gynecology and Obstetrics, General Hospital of PLA, Beijing, China
| | - Jing Gong
- Department of Gynecology and Obstetrics, General Hospital of PLA, Beijing, China
| | - Hong-Hong Liu
- Department of Gynecology and Obstetrics, General Hospital of PLA, Beijing, China
| | - Nan Wang
- Department of Gynecology and Obstetrics, General Hospital of PLA, Beijing, China
| | - Na Wen
- Department of Gynecology and Obstetrics, General Hospital of PLA, Beijing, China
| | - Wen-Sheng Fan
- Department of Gynecology and Obstetrics, General Hospital of PLA, Beijing, China
| | - Bai-Xuan Xu
- Department of Gynecology and Obstetrics, General Hospital of PLA, Beijing, China
| | - Ming-Yang Wang
- Department of Gynecology and Obstetrics, General Hospital of PLA, Beijing, China
| | - Ming-Xia Ye
- Department of Gynecology and Obstetrics, General Hospital of PLA, Beijing, China
| | - Yuan-Guang Meng
- Department of Gynecology and Obstetrics, General Hospital of PLA, Beijing, China
| |
Collapse
|
14
|
Chen S, Hu P, Gu Y, Pang L, Zhang Z, Zhang Y, Meng X, Cao T, Liu X, Fan Z, Shi H. Impact of patient comfort on diagnostic image quality during PET/MR exam: A quantitative survey study for clinical workflow management. J Appl Clin Med Phys 2019; 20:184-192. [PMID: 31207077 PMCID: PMC6612685 DOI: 10.1002/acm2.12664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/05/2019] [Accepted: 05/23/2019] [Indexed: 12/26/2022] Open
Abstract
Background PET/MR is transferring from a powerful scientific research tool to an imaging modality in clinical routine practice. Whole body PET/MR screening usually takes 30–50 minutes to finish, during which a few factors might induce patient discomfort and further cause degraded image quality. The aim of this report is to investigate the patients' perception of the imaging procedure and its correlation with image quality. Methods One hundred and twenty patients (63 males and 57 females, average age = 51.3 years, range 22–70 years) who had been diagnosed with cancer or had previous history of cancer were recruited and scanned with a simultaneous PET/MR system. A questionnaire was given to all patients retrospectively after the PET/MR scan, which has nine questions to assess patients' feeling of the scan on a Likert scale scoring system (1–5, 1 as most satisfied). All PET/MR images were also visually examined by two experts independently to evaluate the quality of the images. Six body locations were assessed and each location was evaluated also with a Likert scale scoring system (1–5, 5 as the best quality). Mann–Whitney Utest was used for statistical analysis to check if there is significant correlation between image quality and patient perceptions. Results With a total of 120 patients, 118 questionnaires were filled and returned for analysis. The patients’ characteristics were summarized in Table 4. The statistics of the patients’ perception in the questionnaire were illustrated in Tables 5–7. Statistical significant correlations were found between MR image quality and patients’ characteristics/perception. Conclusion Our results show that PET/MR scanning is generally safe and comfortable for most of the patients. Statistical analysis does not support the hypothesis that bad patient’s perception leads to degraded image quality.
Collapse
Affiliation(s)
- Shuguang Chen
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pengcheng Hu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yusen Gu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lifang Pang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Zhang
- United Imaging Healthcare Co., Ltd, Shanghai, China
| | - Yiqian Zhang
- United Imaging Healthcare Co., Ltd, Shanghai, China
| | - Xiaolin Meng
- United Imaging Healthcare Co., Ltd, Shanghai, China
| | - Tuoyu Cao
- United Imaging Healthcare Co., Ltd, Shanghai, China
| | - Xin Liu
- Center for Certification an Evaluation, Shanghai Food and Drug Administration, Shanghai, China
| | - Zhijin Fan
- Center for Certification an Evaluation, Shanghai Food and Drug Administration, Shanghai, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Integrated versus separate reading of F-18 FDG-PET/CT and MRI for abdominal malignancies – effect on staging outcomes and diagnostic confidence. Eur Radiol 2019; 29:6900-6910. [DOI: 10.1007/s00330-019-06253-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/04/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022]
|
16
|
Virarkar M, Viswanathan C, Iyer R, de Castro Faria S, Morani A, Carter B, Ganeshan D, Elsherif S, Bhosale PR. The Role of Positron Emission Tomography/Magnetic Resonance Imaging in Gynecological Malignancies. J Comput Assist Tomogr 2019; 43:825-834. [PMID: 31453978 DOI: 10.1097/rct.0000000000000918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accurate oncological staging for early detection is of utmost importance in patient care and increasing the overall patient survival outcome. Hybrid imaging in the form of positron emission tomography (PET)/computed tomography has been successfully implemented in oncological imaging and, where available, has been used consistently in patients with gynecologic malignancies. The implementation of PET/magnetic resonance imaging (MRI) enables high-quality assessment of gynecological malignancies by combining the diagnostic advantages of metabolic information of PET along with the high-resolution anatomical and functional information from the MRI to provide precise information about staging, recurrence, and metastases. This article will review the various applications of PET/MRI in gynecological cancer.
Collapse
Affiliation(s)
- Mayur Virarkar
- From the Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bollineni VR, Ytre-Hauge S, Gulati A, Halle MK, Woie K, Salvesen Ø, Trovik J, Krakstad C, Haldorsen IS. The prognostic value of preoperative FDG-PET/CT metabolic parameters in cervical cancer patients. Eur J Hybrid Imaging 2018. [DOI: 10.1186/s41824-018-0042-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
18
|
|
19
|
Ehman EC, Johnson GB, Villanueva-Meyer JE, Cha S, Leynes AP, Larson PEZ, Hope TA. PET/MRI: Where might it replace PET/CT? J Magn Reson Imaging 2017; 46:1247-1262. [PMID: 28370695 PMCID: PMC5623147 DOI: 10.1002/jmri.25711] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/06/2017] [Indexed: 12/13/2022] Open
Abstract
Simultaneous positron emission tomography and MRI (PET/MRI) is a technology that combines the anatomic and quantitative strengths of MR imaging with physiologic information obtained from PET. PET and computed tomography (PET/CT) performed in a single scanning session is an established technology already in widespread and accepted use worldwide. Given the higher cost and complexity of operating and interpreting the studies obtained on a PET/MRI system, there has been question as to which patients would benefit most from imaging with PET/MRI versus PET/CT. In this article, we compare PET/MRI with PET/CT, detail the applications for which PET/MRI has shown promise and discuss impediments to future adoption. It is our hope that future work will prove the benefit of PET/MRI to specific groups of patients, initially those in which PET/CT and MRI are already performed, leveraging simultaneity and allowing for greater degrees of multiparametric evaluation. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2017;46:1247-1262.
Collapse
Affiliation(s)
- Eric C. Ehman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Andrew Palmera Leynes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Peder Eric Zufall Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Thomas A. Hope
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| |
Collapse
|
20
|
Khiewvan B, Torigian DA, Emamzadehfard S, Paydary K, Salavati A, Houshmand S, Werner TJ, Alavi A. An update on the role of PET/CT and PET/MRI in ovarian cancer. Eur J Nucl Med Mol Imaging 2017; 44:1079-1091. [PMID: 28180966 DOI: 10.1007/s00259-017-3638-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/24/2017] [Indexed: 01/22/2023]
Abstract
This review article summarizes the role of PET/CT and PET/MRI in ovarian cancer. With regard to the diagnosis of ovarian cancer, the presence of FDG uptake within the ovary of a postmenopausal woman raises the concern for ovarian cancer. Multiple studies show that FDG PET/CT can detect lymph node and distant metastasis in ovarian cancer with high accuracy and may, therefore, alter the management to obtain better clinical outcomes. Although PET/CT staging is superior for N and M staging of ovarian cancer, its role is limited for T staging. Additionally, FDG PET/CT is of great benefit in evaluating treatment response and has prognostic value in patients with ovarian cancer. FDG PET/CT also has value to detect recurrent disease, particularly in patients with elevated serum CA-125 levels and negative or inconclusive conventional imaging test results. PET/MRI may beneficial for tumor staging because MRI has higher soft tissue contrast and no ionizing radiation exposure compared to CT. Some non-FDG PET radiotracers such as 18F-fluorothymidine (FLT) or 11C-methionine (MET) have been studied in preclinical and clinical studies as well and may play a role in the evaluation of patients with ovarian cancer.
Collapse
Affiliation(s)
- Benjapa Khiewvan
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, 10700
| | - Drew A Torigian
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Sahra Emamzadehfard
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Koosha Paydary
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Ali Salavati
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Sina Houshmand
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Hybrid PET/MR: Updated Clinical Use and Potential Applications. CURRENT RADIOLOGY REPORTS 2016. [DOI: 10.1007/s40134-016-0191-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
|
23
|
Kwon HW, Becker AK, Goo JM, Cheon GJ. FDG Whole-Body PET/MRI in Oncology: a Systematic Review. Nucl Med Mol Imaging 2016; 51:22-31. [PMID: 28250855 DOI: 10.1007/s13139-016-0411-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/01/2016] [Accepted: 03/16/2016] [Indexed: 01/14/2023] Open
Abstract
The recent advance in hybrid imaging techniques enables offering simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) in various clinical fields. 18F-fluorodeoxyglucose (FDG) PET has been widely used for diagnosis and evaluation of oncologic patients. The growing evidence from research and clinical experiences demonstrated that PET/MRI with FDG can provide comparable or superior diagnostic performance more than conventional radiological imaging such as computed tomography (CT), MRI or PET/CT in various cancers. Combined analysis using structural information and functional/molecular information of tumors can draw additional diagnostic information based on PET/MRI. Further studies including determination of the diagnostic efficacy, optimizing the examination protocol, and analysis of the hybrid imaging results is necessary for extending the FDG PET/MRI application in clinical oncology.
Collapse
Affiliation(s)
- Hyun Woo Kwon
- Department of Nuclear Medicine, Soonchunhyang University Hospital, Cheonan, South Korea
| | | | - Jin Mo Goo
- Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehang-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| |
Collapse
|
24
|
Bagade S, Fowler KJ, Schwarz JK, Grigsby PW, Dehdashti F. PET/MRI Evaluation of Gynecologic Malignancies and Prostate Cancer. Semin Nucl Med 2016; 45:293-303. [PMID: 26050657 DOI: 10.1053/j.semnuclmed.2015.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PET combined with cross-sectional anatomical imaging is an essential part of workup for most malignancies, in which CT or MRI provides anatomical context to the functional information from PET. Hybrid imaging with PET/CT has been extensively researched and implemented clinically in the evaluation and management of patients with gynecologic malignancies. Lately, integrated PET/MR scanners have become available. This new technology is fast gaining a role in clinical applications in the fields of oncology, neurology, and cardiology. MRI provides excellent soft tissue contrast especially in the pelvis and has been proven very useful for imaging prostate and female genital pathologies. The ability of PET to provide accurate functional imaging data with high sensitivity combined with the strength of MRI to provide accurate depiction of anatomy with high contrast and spatial resolution renders combined PET/MRI a desirable method for evaluation of gynecologic malignancies and other pelvic cancers such as prostate cancer. The goal of this article is to provide an overview of the published literature using PET/MRI in gynecologic and prostate cancers.
Collapse
Affiliation(s)
- Swapnil Bagade
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO
| | - Kathryn J Fowler
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO; Alvin J Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Julie K Schwarz
- Alvin J Siteman Cancer Center, Washington University School of Medicine, St Louis, MO; Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO
| | - Perry W Grigsby
- Alvin J Siteman Cancer Center, Washington University School of Medicine, St Louis, MO; Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO
| | - Farrokh Dehdashti
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO; Alvin J Siteman Cancer Center, Washington University School of Medicine, St Louis, MO.
| |
Collapse
|
25
|
Simultaneous positron emission tomography/magnetic resonance imaging for whole-body staging in patients with recurrent gynecological malignancies of the pelvis: a comparison to whole-body magnetic resonance imaging alone. Invest Radiol 2015; 49:808-15. [PMID: 25010207 DOI: 10.1097/rli.0000000000000086] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES The objective of this study was to assess the diagnostic value of integrated positron emission tomography/magnetic resonance imaging (PET/MRI) for whole-body staging of patients with recurrent gynecological pelvic malignancies, in comparison to whole-body MRI alone. MATERIALS AND METHODS The study was approved by the local institutional ethics committee. Written informed consent was obtained before each examination. Thirty-four consecutive patients with a suspected recurrence of cervical (n = 18) or ovarian (n = 16) cancer were prospectively enrolled for an integrated PET/MRI examination, which comprised a diagnostic, contrast-enhanced whole-body MRI protocol including dedicated sagittal dynamic imaging of the pelvis. Two radiologists separately evaluated the data sets regarding lesion count, lesion detection, lesion characterization, and diagnostic confidence. Mean and median values were calculated for each rating. Statistical analyses were performed both per-patient and per-lesion bases using a Wilcoxon signed-rank test to indicate potential significant differences among PET/MRI and MRI (alone) data sets. RESULTS Malignant lesions were present in 25 of the 34 patients. Positron emission tomography/magnetic resonance imaging offered correct and superior identification of all 25 patients with cancer recurrence, compared with MRI alone (23/25). A total of 118 lesions (malignant, 89; benign, 29) were detected. Positron emission tomography/magnetic resonance imaging correctly identified 88 (98.9%) of 89 malignant lesions, whereas MRI alone allowed for correct identification of 79 (88.8%) of the 89 malignant lesions. In addition, PET/MRI provided significantly higher lesion contrast and diagnostic confidence in the detection of malignant lesions (P < 0.001) compared with MRI alone. CONCLUSIONS These first results demonstrate the high diagnostic potential of integrated PET/MRI for the assessment of recurrence of female pelvic malignancies compared with MRI alone.
Collapse
|
26
|
Kohan AA, Paspulati RM, Sherertz T, Mihaloew H, Herrmann K. Positron emission tomography-magnetic resonance imaging in oncologic diseases of the male and female pelvis. Semin Roentgenol 2014; 49:334-44. [PMID: 25498230 DOI: 10.1053/j.ro.2014.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Andres A Kohan
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH
| | - Raj Mohan Paspulati
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH
| | - Tracy Sherertz
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH
| | - Hugh Mihaloew
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH
| | - Karin Herrmann
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH.
| |
Collapse
|
27
|
Musto A, Grassetto G, Marzola MC, Chondrogiannis S, Maffione AM, Rampin L, Fuster D, Giammarile F, Colletti PM, Rubello D. Role of 18F-FDG PET/CT in the carcinoma of the uterus: a review of literature. Yonsei Med J 2014; 55:1467-72. [PMID: 25323881 PMCID: PMC4205684 DOI: 10.3349/ymj.2014.55.6.1467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In the present review we reported the value of 18F-fluorodeoxyglucose (FDG) PET/CT in face of uterine cancer, in terms of sensitivity, specificity and accuracy. Moreover, we made a comparison with the other imaging techniques currently used to evacuate these tumors including contrast-enhanced CT, contrast enhanced-MRI and transvaginal ultrasonography. FDG PET/CT has been reported to be of particular value in detecting occult metastatic lesions, in prediction of response to treatment and as a prognostic factor.
Collapse
Affiliation(s)
| | - Gaia Grassetto
- Nuclear Medicine Department, Santa Maria della Misericordia Hospital, Rovigo, Italy
| | | | | | | | - Lucia Rampin
- Nuclear Medicine Department, Santa Maria della Misericordia Hospital, Rovigo, Italy
| | - David Fuster
- Nuclear Medicine Department, Hospital Clinic, Barcelona, Spain
| | | | - Patrick M Colletti
- Department of Radiology, University of Southern California, Los Angeles, CA, USA
| | - Domenico Rubello
- Nuclear Medicine Department, Santa Maria della Misericordia Hospital, Rovigo, Italy.
| |
Collapse
|
28
|
Assessment of Combination of Contrast-Enhanced Magnetic Resonance Imaging and Positron Emission Tomography/Computed Tomography for Evaluation of Ovarian Masses. Invest Radiol 2014; 49:524-31. [DOI: 10.1097/rli.0000000000000050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Kitajima K, Suenaga Y, Ueno Y, Kanda T, Maeda T, Deguchi M, Ebina Y, Yamada H, Takahashi S, Sugimura K. Fusion of PET and MRI for staging of uterine cervical cancer: comparison with contrast-enhanced (18)F-FDG PET/CT and pelvic MRI. Clin Imaging 2014; 38:464-469. [PMID: 24642250 DOI: 10.1016/j.clinimag.2014.02.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 12/03/2013] [Accepted: 02/09/2014] [Indexed: 11/18/2022]
Abstract
PURPOSE To investigate the fusion of pelvic magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (PET) for assessment of locoregional extension and nodal staging of cervical cancer. METHODS PET/computed tomography (CT), MRI, and non-fused and fusion of PET and MRI for assessing the extent of the primary tumor and metastasis to nodes were evaluated. RESULTS Accuracy for T-status was 83.3% for fused and non-fused PET/MRI and MRI proved significantly more accurate than PET/CT (53.3%) (P=.0077). Sensitivity, specificity, and accuracy for nodal metastasis were 92.3%, 88.2%, and 90.0% for fused PET/MRI and PET/contrast-enhanced CT; 84.6%, 94.1%, and 90.0% for non-fused PET/MRI; and 69.2%, 100%, and 86.7% for MRI. CONCLUSION Fused PET/MRI combines the individual advantages of MRI and PET.
Collapse
Affiliation(s)
- Kazuhiro Kitajima
- Department of Radiology and of Obstetrics and Gynecology of Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Yuko Suenaga
- Department of Radiology and of Obstetrics and Gynecology of Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiko Ueno
- Department of Radiology and of Obstetrics and Gynecology of Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomonori Kanda
- Department of Radiology, Hyogo Cancer Center, Hyogo, Japan
| | - Tetsuo Maeda
- Department of Radiology and of Obstetrics and Gynecology of Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Yasuhiko Ebina
- Department of Radiology, Hyogo Cancer Center, Hyogo, Japan
| | - Hideto Yamada
- Department of Radiology, Hyogo Cancer Center, Hyogo, Japan
| | - Satoru Takahashi
- Department of Radiology and of Obstetrics and Gynecology of Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazuro Sugimura
- Department of Radiology and of Obstetrics and Gynecology of Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
30
|
Value of fusion of PET and MRI in the detection of intra-pelvic recurrence of gynecological tumor: comparison with 18F-FDG contrast-enhanced PET/CT and pelvic MRI. Ann Nucl Med 2013; 28:25-32. [PMID: 24129541 PMCID: PMC4328133 DOI: 10.1007/s12149-013-0777-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/03/2013] [Indexed: 11/06/2022]
Abstract
Background To evaluate the diagnostic value of retrospective image fusion from pelvic magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose positron emission tomography (PET) in detecting intra-pelvic recurrence of gynecological tumor. Methods Thirty patients with a suspicion of recurrence of gynecological malignancy underwent inline contrast-enhanced PET/computed tomography (CT) and pelvic contrast-enhanced MRI for restaging. Diagnostic performance about the local recurrence, pelvic lymph node and bone metastasis and peritoneal lesion of PET/low-dose non-enhanced CT (PET/ldCT), PET/full-dose contrast-enhanced CT (PET/ceCT), contrast-enhanced MRI, and retrospective image fusion from PET and MRI (fused PET/MRI) were evaluated by two experienced readers. Final diagnoses were obtained by histopathological examinations, radiological imaging and clinical follow-up for at least 6 months. McNemar test was employed for statistical analysis. Results Documented positive locally recurrent disease, pelvic lymph node and bone metastases, and peritoneal dissemination were present in 53.3, 26.7, 10.0, and 16.7 %, respectively. Patient-based sensitivity for detecting local recurrence, pelvic lymph node and bone metastasis and peritoneal lesion were 87.5, 87.5, 100 and 80.0 %, respectively, for fused PET/MRI, 87.5, 62.5, 66.7 and 60.0 %, respectively, for contrast-enhanced MRI, 62.5, 87.5, 66.7 and 80.0 %, respectively, for PET/ceCT, and 50.0, 87.5, 66.7 and 60.0 %, respectively, for PET/ldCT. The sensitivity of diagnosing local recurrence by fused PET/MRI was significantly better than that of PET/ldCT (p = 0.041). The patient-based sensitivity, specificity and accuracy for the detection of intra-pelvic recurrence/metastasis were 91.3, 100 and 93.3 % for fused PET/MRI, 82.6, 100 and 86.7 % for contrast-enhanced MRI, 82.6, 100 and 86.7 % for PET/ceCT and 78.3, 85.7 and 80.0 % for PET/ldCT. Conclusion Fused PET/MRI combines the individual advantages of MRI and PET, and is a valuable technique for assessment of intra-pelvic recurrence of gynecological cancers.
Collapse
|
31
|
Kitajima K, Suenaga Y, Ueno Y, Kanda T, Maeda T, Takahashi S, Ebina Y, Miyahara Y, Yamada H, Sugimura K. Value of fusion of PET and MRI for staging of endometrial cancer: Comparison with 18F-FDG contrast-enhanced PET/CT and dynamic contrast-enhanced pelvic MRI. Eur J Radiol 2013; 82:1672-6. [DOI: 10.1016/j.ejrad.2013.05.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 04/30/2013] [Accepted: 05/03/2013] [Indexed: 11/30/2022]
|
32
|
Jadvar H, Colletti PM. Competitive advantage of PET/MRI. Eur J Radiol 2013; 83:84-94. [PMID: 23791129 DOI: 10.1016/j.ejrad.2013.05.028] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 05/20/2013] [Accepted: 05/20/2013] [Indexed: 02/08/2023]
Abstract
Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved.
Collapse
Affiliation(s)
- Hossein Jadvar
- Division of Nuclear Medicine, Department of Radiology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA.
| | - Patrick M Colletti
- Division of Nuclear Medicine, Department of Radiology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
33
|
Torigian DA, Zaidi H, Kwee TC, Saboury B, Udupa JK, Cho ZH, Alavi A. PET/MR imaging: technical aspects and potential clinical applications. Radiology 2013; 267:26-44. [PMID: 23525716 DOI: 10.1148/radiol.13121038] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
UNLABELLED Instruments that combine positron emission tomography (PET) and magnetic resonance (MR) imaging have recently been assembled for use in humans, and may have diagnostic performance superior to that of PET/computed tomography (CT) for particular clinical and research applications. MR imaging has major strengths compared with CT, including superior soft-tissue contrast resolution, multiplanar image acquisition, and functional imaging capability through specialized techniques such as diffusion-tensor imaging, diffusion-weighted (DW) imaging, functional MR imaging, MR elastography, MR spectroscopy, perfusion-weighted imaging, MR imaging with very short echo times, and the availability of some targeted MR imaging contrast agents. Furthermore, the lack of ionizing radiation from MR imaging is highly appealing, particularly when pediatric, young adult, or pregnant patients are to be imaged, and the safety profile of MR imaging contrast agents compares very favorably with iodinated CT contrast agents. MR imaging also can be used to guide PET image reconstruction, partial volume correction, and motion compensation for more accurate disease quantification and can improve anatomic localization of sites of radiotracer uptake, improve diagnostic performance, and provide for comprehensive regional and global structural, functional, and molecular assessment of various clinical disorders. In this review, we discuss the historical development, software-based registration, instrumentation and design, quantification issues, potential clinical applications, potential clinical roles of image segmentation and global disease assessment, and challenges related to PET/MR imaging. SUPPLEMENTAL MATERIAL http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.13121038/-/DC1.
Collapse
Affiliation(s)
- Drew A Torigian
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104-4283, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Hybrid PET/magnetic resonance (MR) imaging, which combines the excellent anatomic information and functional MR imaging parameters with the metabolic and molecular information obtained with PET, may be superior to PET/computed tomography or MR imaging alone for a wide range of disease conditions. This review highlights potential clinical applications in neurologic, cardiovascular, and musculoskeletal disease conditions, with special attention to applications in oncologic imaging.
Collapse
|
35
|
Nagamachi S, Nishii R, Wakamatsu H, Mizutani Y, Kiyohara S, Fujita S, Futami S, Sakae T, Furukoji E, Tamura S, Arita H, Chijiiwa K, Kawai K. The usefulness of (18)F-FDG PET/MRI fusion image in diagnosing pancreatic tumor: comparison with (18)F-FDG PET/CT. Ann Nucl Med 2013; 27:554-63. [PMID: 23580090 DOI: 10.1007/s12149-013-0719-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 03/17/2013] [Indexed: 12/17/2022]
Abstract
PURPOSE This study aimed at demonstrating the feasibility of retrospectively fused (18)F FDG-PET and MRI (PET/MRI fusion image) in diagnosing pancreatic tumor, in particular differentiating malignant tumor from benign lesions. In addition, we evaluated additional findings characterizing pancreatic lesions by FDG-PET/MRI fusion image. METHODS We analyzed retrospectively 119 patients: 96 cancers and 23 benign lesions. FDG-PET/MRI fusion images (PET/T1 WI or PET/T2WI) were made by dedicated software using 1.5 Tesla (T) MRI image and FDG-PET images. These images were interpreted by two well-trained radiologists without knowledge of clinical information and compared with FDG-PET/CT images. We compared the differential diagnostic capability between PET/CT and FDG-PET/MRI fusion image. In addition, we evaluated additional findings such as tumor structure and tumor invasion. RESULTS FDG-PET/MRI fusion image significantly improved accuracy compared with that of PET/CT (96.6 vs. 86.6 %). As additional finding, dilatation of main pancreatic duct was noted in 65.9 % of solid types and in 22.6 % of cystic types, on PET/MRI-T2 fusion image. Similarly, encasement of adjacent vessels was noted in 43.1 % of solid types and in 6.5 % of cystic types. Particularly in cystic types, intra-tumor structures such as mural nodule (35.4 %) or intra-cystic septum (74.2 %) were detected additionally. Besides, PET/MRI-T2 fusion image could detect extra benign cystic lesions (9.1 % in solid type and 9.7 % in cystic type) that were not noted by PET/CT. CONCLUSIONS In diagnosing pancreatic lesions, FDG-PET/MRI fusion image was useful in differentiating pancreatic cancer from benign lesions. Furthermore, it was helpful in evaluating relationship between lesions and surrounding tissues as well as in detecting extra benign cysts.
Collapse
Affiliation(s)
- Shigeki Nagamachi
- Department of Radiology, School of Medicine, Miyazaki University, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki Prefecture, 889-1692, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
[FDG-PET and endometrial cancer]. Bull Cancer 2011; 99:21-8. [PMID: 22182739 DOI: 10.1684/bdc.2011.1514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
FDG-PET is widely used for the diagnosis, the staging and the search for recurrence of many tumors. However, there are currently no recommendations for its use in endometrial cancer. This article is an update of the literature data to enable everyone to form an opinion on the subject. Future prospects are considered.
Collapse
|
38
|
Wahl RL, Javadi MS, Eslamy H, Shruti A, Bristow R. The Roles of Fluorodeoxyglucose-PET/Computed Tomography in Ovarian Cancer: Diagnosis, Assessing Response, and Detecting Recurrence. PET Clin 2010; 5:447-61. [PMID: 27157972 DOI: 10.1016/j.cpet.2010.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The potential roles of fluorodeoxyglucose positron emission tomography/computed tomography imaging in ovarian cancer include noninvasive characterization of an ovarian mass, staging, and treatment planning. This article assesses these roles for predicting and monitoring response to treatment, restaging, and early diagnosis of recurrence.
Collapse
Affiliation(s)
- Richard L Wahl
- Division of Nuclear Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Mehrbod Som Javadi
- Division of Nuclear Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hedieh Eslamy
- Division of Nuclear Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aditi Shruti
- Division of Nuclear Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert Bristow
- Division of Gynecological Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|