1
|
Kong X, Zhang Q, Wu X, Zou T, Duan J, Song S, Nie J, Tao C, Tang M, Wang M, Zou J, Xie Y, Li Z, Li Z. Advances in Imaging in Evaluating the Efficacy of Neoadjuvant Chemotherapy for Breast Cancer. Front Oncol 2022; 12:816297. [PMID: 35669440 PMCID: PMC9163342 DOI: 10.3389/fonc.2022.816297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Neoadjuvant chemotherapy (NAC) is increasingly widely used in breast cancer treatment, and accurate evaluation of its response provides essential information for treatment and prognosis. Thus, the imaging tools used to quantify the disease response are critical in evaluating and managing patients treated with NAC. We discussed the recent progress, advantages, and disadvantages of common imaging methods in assessing the efficacy of NAC for breast cancer.
Collapse
Affiliation(s)
- Xianshu Kong
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Qian Zhang
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Xuemei Wu
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Tianning Zou
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Jiajun Duan
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Shujie Song
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Jianyun Nie
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Chu Tao
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Mi Tang
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Maohua Wang
- First Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Jieya Zou
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Yu Xie
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Zhenhui Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Zhen Li
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| |
Collapse
|
2
|
van der Hoogt KJJ, Schipper RJ, Winter-Warnars GA, Ter Beek LC, Loo CE, Mann RM, Beets-Tan RGH. Factors affecting the value of diffusion-weighted imaging for identifying breast cancer patients with pathological complete response on neoadjuvant systemic therapy: a systematic review. Insights Imaging 2021; 12:187. [PMID: 34921645 PMCID: PMC8684570 DOI: 10.1186/s13244-021-01123-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/06/2021] [Indexed: 12/18/2022] Open
Abstract
This review aims to identify factors causing heterogeneity in breast DWI-MRI and their impact on its value for identifying breast cancer patients with pathological complete response (pCR) on neoadjuvant systemic therapy (NST). A search was performed on PubMed until April 2020 for studies analyzing DWI for identifying breast cancer patients with pCR on NST. Technical and clinical study aspects were extracted and assessed for variability. Twenty studies representing 1455 patients/lesions were included. The studies differed with respect to study population, treatment type, DWI acquisition technique, post-processing (e.g., mono-exponential/intravoxel incoherent motion/stretched exponential modeling), and timing of follow-up studies. For the acquisition and generation of ADC-maps, various b-value combinations were used. Approaches for drawing regions of interest on longitudinal MRIs were highly variable. Biological variability due to various molecular subtypes was usually not taken into account. Moreover, definitions of pCR varied. The individual areas under the curve for the studies range from 0.50 to 0.92. However, overlapping ranges of mean/median ADC-values at pre- and/or during and/or post-NST were found for the pCR and non-pCR groups between studies. The technical, clinical, and epidemiological heterogeneity may be causal for the observed variability in the ability of DWI to predict pCR accurately. This makes implementation of DWI for pCR prediction and evaluation based on one absolute ADC threshold for all breast cancer types undesirable. Multidisciplinary consensus and appropriate clinical study design, taking biological and therapeutic variation into account, is required for obtaining standardized, reliable, and reproducible DWI measurements for pCR/non-pCR identification.
Collapse
Affiliation(s)
- Kay J J van der Hoogt
- Department of Radiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands. .,GROW School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Robert J Schipper
- Department of Radiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Gonneke A Winter-Warnars
- Department of Radiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Leon C Ter Beek
- Department of Medical Physics, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Claudette E Loo
- Department of Radiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Ritse M Mann
- Department of Radiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Regina G H Beets-Tan
- Department of Radiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,GROW School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.,Danish Colorectal Cancer Unit South, Institute of Regional Health Research, Vejle University Hospital, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
3
|
Cancer Detection and Quantification of Treatment Response Using Diffusion-Weighted MRI. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
4
|
Lo Gullo R, Eskreis-Winkler S, Morris EA, Pinker K. Machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy. Breast 2020; 49:115-122. [PMID: 31786416 PMCID: PMC7375548 DOI: 10.1016/j.breast.2019.11.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 12/16/2022] Open
Abstract
In patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy (NAC), some patients achieve a complete pathologic response (pCR), some achieve a partial response, and some do not respond at all or even progress. Accurate prediction of treatment response has the potential to improve patient care by improving prognostication, enabling de-escalation of toxic treatment that has little benefit, facilitating upfront use of novel targeted therapies, and avoiding delays to surgery. Visual inspection of a patient's tumor on multiparametric MRI is insufficient to predict that patient's response to NAC. However, machine learning and deep learning approaches using a mix of qualitative and quantitative MRI features have recently been applied to predict treatment response early in the course of or even before the start of NAC. This is a novel field but the data published so far has shown promising results. We provide an overview of the machine learning and deep learning models developed to date, as well as discuss some of the challenges to clinical implementation.
Collapse
Affiliation(s)
- Roberto Lo Gullo
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th Street, New York, NY, 10065, USA
| | - Sarah Eskreis-Winkler
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th Street, New York, NY, 10065, USA
| | - Elizabeth A Morris
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th Street, New York, NY, 10065, USA
| | - Katja Pinker
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th Street, New York, NY, 10065, USA.
| |
Collapse
|
5
|
Sonkar K, Ayyappan V, Tressler CM, Adelaja O, Cai R, Cheng M, Glunde K. Focus on the glycerophosphocholine pathway in choline phospholipid metabolism of cancer. NMR IN BIOMEDICINE 2019; 32:e4112. [PMID: 31184789 PMCID: PMC6803034 DOI: 10.1002/nbm.4112] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/16/2019] [Accepted: 04/20/2019] [Indexed: 05/02/2023]
Abstract
Activated choline metabolism is a hallmark of carcinogenesis and tumor progression, which leads to elevated levels of phosphocholine and glycerophosphocholine in all types of cancer tested so far. Magnetic resonance spectroscopy applications have played a key role in detecting these elevated choline phospholipid metabolites. To date, the majority of cancer-related studies have focused on phosphocholine and the Kennedy pathway, which constitutes the biosynthesis pathway for membrane phosphatidylcholine. Fewer and more recent studies have reported on the importance of glycerophosphocholine in cancer. In this review article, we summarize the recent literature on glycerophosphocholine metabolism with respect to its cancer biology and its detection by magnetic resonance spectroscopy applications.
Collapse
Affiliation(s)
- Kanchan Sonkar
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vinay Ayyappan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Caitlin M. Tressler
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Oluwatobi Adelaja
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ruoqing Cai
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Menglin Cheng
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristine Glunde
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Diffusion-Weighted Magnetic Resonance Imaging of the Breast: an Accurate Method for Measuring Early Response to Neoadjuvant Chemotherapy? CURRENT BREAST CANCER REPORTS 2019. [DOI: 10.1007/s12609-019-0311-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Fardanesh R, Marino MA, Avendano D, Leithner D, Pinker K, Thakur SB. Proton MR spectroscopy in the breast: Technical innovations and clinical applications. J Magn Reson Imaging 2019; 50:1033-1046. [PMID: 30848037 DOI: 10.1002/jmri.26700] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/20/2019] [Indexed: 01/27/2023] Open
Abstract
Proton magnetic resonance spectroscopy (MRS) is a promising noninvasive diagnostic technique for investigation of breast cancer metabolism. Spectroscopic imaging data may be obtained following contrast-enhanced MRI by applying the point-resolved spectroscopy sequence (PRESS) or the stimulated echo acquisition mode (STEAM) sequence from the MR voxel encompassing the breast lesion. Total choline signal (tCho) measured in vivo using either a qualitative or quantitative approach has been used as a diagnostic test in the workup of malignant breast lesions. In addition to tCho metabolites, other relevant metabolites, including multiple lipids, can be detected and monitored. MRS has been heavily investigated as an adjunct to morphologic and dynamic MRI to improve diagnostic accuracy in breast cancer, obviating unnecessary benign biopsies. Besides its use in the staging of breast cancer, other promising applications have been recently investigated, including the assessment of treatment response and therapy monitoring. This review provides guidance on spectroscopic acquisition and quantification methods and highlights current and evolving clinical applications of proton MRS. Level of Evidence 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2019.
Collapse
Affiliation(s)
- Reza Fardanesh
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Maria Adele Marino
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Biomedical Sciences and Morphologic and Functional Imaging, Policlinico Universitario G. Martino, University of Messina, Italy
| | - Daly Avendano
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Doris Leithner
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Katja Pinker
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - Sunitha B Thakur
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
8
|
Galbán CJ, Hoff BA, Chenevert TL, Ross BD. Diffusion MRI in early cancer therapeutic response assessment. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3458. [PMID: 26773848 PMCID: PMC4947029 DOI: 10.1002/nbm.3458] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 11/09/2015] [Accepted: 11/12/2015] [Indexed: 05/05/2023]
Abstract
Imaging biomarkers for the predictive assessment of treatment response in patients with cancer earlier than standard tumor volumetric metrics would provide new opportunities to individualize therapy. Diffusion-weighted MRI (DW-MRI), highly sensitive to microenvironmental alterations at the cellular level, has been evaluated extensively as a technique for the generation of quantitative and early imaging biomarkers of therapeutic response and clinical outcome. First demonstrated in a rodent tumor model, subsequent studies have shown that DW-MRI can be applied to many different solid tumors for the detection of changes in cellularity as measured indirectly by an increase in the apparent diffusion coefficient (ADC) of water molecules within the lesion. The introduction of quantitative DW-MRI into the treatment management of patients with cancer may aid physicians to individualize therapy, thereby minimizing unnecessary systemic toxicity associated with ineffective therapies, saving valuable time, reducing patient care costs and ultimately improving clinical outcome. This review covers the theoretical basis behind the application of DW-MRI to monitor therapeutic response in cancer, the analytical techniques used and the results obtained from various clinical studies that have demonstrated the efficacy of DW-MRI for the prediction of cancer treatment response. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | | | | | - B. D. Ross
- Correspondence to: B. D. Ross, University of Michigan School of Medicine, Center for Molecular Imaging and Department of Radiology, Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Abstract
Compared with other fields of medicine, there is hardly an area that has seen such fast development as the world of breast cancer. Indeed, the way we treat breast cancer has changed fundamentally over the past decades. Breast imaging has always been an integral part of this change, and it undergoes constant adjustment to new ways of thinking. This relates not only to the technical tools we use for diagnosing breast cancer but also to the way diagnostic information is used to guide treatment. There is a constant change of concepts for and attitudes toward breast cancer, and a constant flux of new ideas, new treatment approaches, and new insights into the molecular and biological behavior of this disease. Clinical breast radiologists and even more so, clinician scientists, interested in breast imaging need to keep abreast with this rapidly changing world. Diagnostic or treatment approaches that are considered useful today may be abandoned tomorrow. Approaches that seem irrelevant or far too extravagant today may prove clinically useful and adequate next year. Radiologists must constantly question what they do, and align their clinical aims and research objectives with the changing needs of contemporary breast oncology. Moreover, knowledge about the past helps better understand present debates and controversies. Accordingly, in this article, we provide an overview on the evolution of breast imaging and breast cancer treatment, describe current areas of research, and offer an outlook regarding the years to come.
Collapse
|
10
|
|
11
|
Bolan PJ, Kim E, Herman BA, Newstead GM, Rosen MA, Schnall MD, Pisano ED, Weatherall PT, Morris EA, Lehman CD, Garwood M, Nelson MT, Yee D, Polin SM, Esserman LJ, Gatsonis CA, Metzger GJ, Newitt DC, Partridge SC, Hylton NM. MR spectroscopy of breast cancer for assessing early treatment response: Results from the ACRIN 6657 MRS trial. J Magn Reson Imaging 2016; 46:290-302. [PMID: 27981651 DOI: 10.1002/jmri.25560] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/01/2016] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To estimate the accuracy of predicting response to neoadjuvant chemotherapy (NACT) in patients with locally advanced breast cancer using MR spectroscopy (MRS) measurements made very early in treatment. MATERIALS AND METHODS This prospective Health Insurance Portability and Accountability Act (HIPAA)-compliant protocol was approved by the American College of Radiology and local-site institutional review boards. One hundred nineteen women with invasive breast cancer of ≥3 cm undergoing NACT were enrolled between September 2007 and April 2010. MRS measurements of the concentration of choline-containing compounds ([tCho]) were performed before the first chemotherapy regimen (time point 1, TP1) and 20-96 h after the first cycle of treatment (TP2). The change in [tCho] was assessed for its ability to predict pathologic complete response (pCR) and radiologic response using the area under the receiver operating characteristic curve (AUC) and logistic regression models. RESULTS Of the 119 subjects enrolled, only 29 cases (24%) with eight pCRs provided usable data for the primary analysis. Technical challenges in acquiring quantitative MRS data in a multi-site trial setting limited the capture of usable data. In this limited data set, the decrease in tCho from TP1 to TP2 had poor ability to predict either pCR (AUC = 0.53, 95% confidence interval [CI]: 0.27-0.79) or radiologic response (AUC = 0.51, 95% CI: 0.27-0.75). CONCLUSION The technical difficulty of acquiring quantitative MRS data in a multi-site clinical trial setting led to a low yield of analyzable data, which was insufficient to accurately measure the ability of early MRS measurements to predict response to NACT. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:290-302.
Collapse
Affiliation(s)
- Patrick J Bolan
- Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eunhee Kim
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA.,American College of Radiology Imaging Network (ACRIN), Philadelphia, Pennsylvania, USA
| | - Benjamin A Herman
- American College of Radiology Imaging Network (ACRIN), Philadelphia, Pennsylvania, USA.,Center for Statistical Sciences, Brown University, Providence, Rhode Island, USA
| | | | - Mark A Rosen
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mitchell D Schnall
- American College of Radiology Imaging Network (ACRIN), Philadelphia, Pennsylvania, USA.,Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Etta D Pisano
- Department of Radiology, Medical College of South Carolina, Charleston, South Carolina, USA
| | - Paul T Weatherall
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Elizabeth A Morris
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Constance D Lehman
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael Garwood
- Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael T Nelson
- Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Douglas Yee
- Masonic Cancer Center and Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sandra M Polin
- Washington Radiology Associates, P.C., Fairfax, Virginia, USA
| | - Laura J Esserman
- Department of Surgery, University of California, San Francisco, California, USA
| | - Constantine A Gatsonis
- American College of Radiology Imaging Network (ACRIN), Philadelphia, Pennsylvania, USA.,Center for Statistical Sciences, Brown University, Providence, Rhode Island, USA
| | - Gregory J Metzger
- Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - David C Newitt
- Department of Radiology, University of California, San Francisco, California, USA
| | | | - Nola M Hylton
- Department of Radiology, University of California, San Francisco, California, USA
| | | |
Collapse
|
12
|
Abstract
Compared with other fields of medicine, there is hardly an area that has seen such fast development as the world of breast cancer. Indeed, the way we treat breast cancer has changed fundamentally over the past decades. Breast imaging has always been an integral part of this change, and it undergoes constant adjustment to new ways of thinking. This relates not only to the technical tools we use for diagnosing breast cancer but also to the way diagnostic information is used to guide treatment. There is a constant change of concepts for and attitudes toward breast cancer, and a constant flux of new ideas, new treatment approaches, and new insights into the molecular and biological behavior of this disease. Clinical breast radiologists and even more so, clinician scientists, interested in breast imaging need to keep abreast with this rapidly changing world. Diagnostic or treatment approaches that are considered useful today may be abandoned tomorrow. Approaches that seem irrelevant or far too extravagant today may prove clinically useful and adequate next year. Radiologists must constantly question what they do, and align their clinical aims and research objectives with the changing needs of contemporary breast oncology. Moreover, knowledge about the past helps better understand present debates and controversies. Accordingly, in this article, we provide an overview on the evolution of breast imaging and breast cancer treatment, describe current areas of research, and offer an outlook regarding the years to come.
Collapse
|
13
|
Diffusion MRI with Semi-Automated Segmentation Can Serve as a Restricted Predictive Biomarker of the Therapeutic Response of Liver Metastasis. Magn Reson Imaging 2015; 33:1267-1273. [PMID: 26284600 DOI: 10.1016/j.mri.2015.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/13/2015] [Accepted: 08/08/2015] [Indexed: 12/26/2022]
Abstract
PURPOSE To assess the value of semi-automated segmentation applied to diffusion MRI for predicting the therapeutic response of liver metastasis. METHODS Conventional diffusion weighted magnetic resonance imaging (MRI) was performed using b-values of 0, 150, 300 and 450s/mm(2) at baseline and days 4, 11 and 39 following initiation of a new chemotherapy regimen in a pilot study with 18 women with 37 liver metastases from primary breast cancer. A semi-automated segmentation approach was used to identify liver metastases. Linear regression analysis was used to assess the relationship between baseline values of the apparent diffusion coefficient (ADC) and change in tumor size by day 39. RESULTS A semi-automated segmentation scheme was critical for obtaining the most reliable ADC measurements. A statistically significant relationship between baseline ADC values and change in tumor size at day 39 was observed for minimally treated patients with metastatic liver lesions measuring 2-5cm in size (p=0.002), but not for heavily treated patients with the same tumor size range (p=0.29), or for tumors of smaller or larger sizes. ROC analysis identified a baseline threshold ADC value of 1.33μm(2)/ms as 75% sensitive and 83% specific for identifying non-responding metastases in minimally treated patients with 2-5cm liver lesions. CONCLUSION Quantitative imaging can substantially benefit from a semi-automated segmentation scheme. Quantitative diffusion MRI results can be predictive of therapeutic outcome in selected patients with liver metastases, but not for all liver metastases, and therefore should be considered to be a restricted biomarker.
Collapse
|
14
|
Woolf DK, Padhani AR, Makris A. Magnetic Resonance Imaging, Digital Mammography, and Sonography: Tumor Characteristics and Tumor Biology in Primary Setting. J Natl Cancer Inst Monogr 2015; 2015:15-20. [PMID: 26063879 DOI: 10.1093/jncimonographs/lgv013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The use of imaging in the arena of primary treatment for breast cancer is gaining importance as a technique for assessing response to chemotherapy as well as assessing the underlying tumor biology. Both mammography and ultrasound have traditionally been used, in addition to clinical evaluation, to evaluate response to treatment although they have shed little light on the underlying biological processes. Functional magnetic resonance imaging techniques have the ability to assess response to treatments in addition to providing valuable information on changes in tumor perfusion, vascular permeability, oxygenation, cellularity, proliferation, and metabolism both at baseline and after treatment. This noninvasive method of evaluating cellular function is of importance both as endpoints for clinical trials and to our understanding of the biological mechanisms of cancer.
Collapse
Affiliation(s)
- David K Woolf
- Academic Oncology Unit (DKW, AM) and Paul Strickland Scanner Centre (ARP), Mount Vernon Cancer Centre, Northwood, UK
| | - Anwar R Padhani
- Academic Oncology Unit (DKW, AM) and Paul Strickland Scanner Centre (ARP), Mount Vernon Cancer Centre, Northwood, UK
| | - Andreas Makris
- Academic Oncology Unit (DKW, AM) and Paul Strickland Scanner Centre (ARP), Mount Vernon Cancer Centre, Northwood, UK.
| |
Collapse
|
15
|
Leong KM, Lau P, Ramadan S. Utilisation of MR spectroscopy and diffusion weighted imaging in predicting and monitoring of breast cancer response to chemotherapy. J Med Imaging Radiat Oncol 2015; 59:268-77. [PMID: 25913106 DOI: 10.1111/1754-9485.12310] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 03/03/2015] [Indexed: 12/19/2022]
Abstract
Neoadjuvant chemotherapy (NACT) is the standard treatment option for breast cancer as more data shows that pathologic complete response (pCR) after NACT correlates with improved prognosis. MRI is accepted as the best imaging modality for evaluating the response to NACT in many studies as compared with clinical examination and other imaging modalities. In vivo magnetic resonance spectroscopy (MRS) and diffusion-weighted imaging (DWI) studies have both emerged as potential tools to provide early response indicators based on the changes in the metabolites and the apparent diffusion coefficient (ADC) respectively. In this review article, we aim to discuss the strength and limitations of MRS and DWI in monitoring of early response breast cancer to NACT.
Collapse
Affiliation(s)
- Kin Men Leong
- Department of Radiology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Peter Lau
- Department of Radiology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Saadallah Ramadan
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
16
|
Weidensteiner C, Allegrini PR, Sticker-Jantscheff M, Romanet V, Ferretti S, McSheehy PMJ. Tumour T1 changes in vivo are highly predictive of response to chemotherapy and reflect the number of viable tumour cells--a preclinical MR study in mice. BMC Cancer 2014; 14:88. [PMID: 24528602 PMCID: PMC3932835 DOI: 10.1186/1471-2407-14-88] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/11/2014] [Indexed: 11/10/2022] Open
Abstract
Background Effective chemotherapy rapidly reduces the spin–lattice relaxation of water protons (T1) in solid tumours and this change (ΔT1) often precedes and strongly correlates with the eventual change in tumour volume (TVol). To understand the biological nature of ΔT1, we have performed studies in vivo and ex vivo with the allosteric mTOR inhibitor, everolimus. Methods Mice bearing RIF-1 tumours were studied by magnetic resonance imaging (MRI) to determine TVol and T1, and MR spectroscopy (MRS) to determine levels of the proliferation marker choline and levels of lipid apoptosis markers, prior to and 5 days (endpoint) after daily treatment with vehicle or everolimus (10 mg/kg). At the endpoint, tumours were ablated and an entire section analysed for cellular and necrotic quantification and staining for the proliferation antigen Ki67 and cleaved-caspase-3 as a measure of apoptosis. The number of blood-vessels (BV) was evaluated by CD31 staining. Mice bearing B16/BL6 melanoma tumours were studied by MRI to determine T1 under similar everolimus treatment. At the endpoint, cell bioluminescence of the tumours was measured ex vivo. Results Everolimus blocked RIF-1 tumour growth and significantly reduced tumour T1 and total choline (Cho) levels, and increased polyunsaturated fatty-acids which are markers of apoptosis. Immunohistochemistry showed that everolimus reduced the %Ki67+ cells but did not affect caspase-3 apoptosis, necrosis, BV-number or cell density. The change in T1 (ΔT1) correlated strongly with the changes in TVol and Cho and %Ki67+. In B16/BL6 tumours, everolimus also decreased T1 and this correlated with cell bioluminescence; another marker of cell viability. Receiver-operating-characteristic curves (ROC) for everolimus on RIF-1 tumours showed that ΔT1 had very high levels of sensitivity and specificity (ROCAUC = 0.84) and this was confirmed for the cytotoxic patupilone in the same tumour model (ROCAUC = 0.97). Conclusion These studies suggest that ΔT1 is not a measure of cell density but reflects the decreased number of remaining viable and proliferating tumour cells due to perhaps cell and tissue destruction releasing proteins and/or metals that cause T1 relaxation. ΔT1 is a highly sensitive and specific predictor of response. This MRI method provides the opportunity to stratify a patient population during tumour therapy in the clinic.
Collapse
|
17
|
|
18
|
Yu L, Jiang C, Huang S, Gong X, Wang S, Shen P. Analysis of urinary metabolites for breast cancer patients receiving chemotherapy by CE-MS coupled with on-line concentration. Clin Biochem 2013; 46:1065-1073. [DOI: 10.1016/j.clinbiochem.2013.05.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/13/2013] [Accepted: 05/15/2013] [Indexed: 11/24/2022]
|
19
|
Chen JH, Su MY. Clinical application of magnetic resonance imaging in management of breast cancer patients receiving neoadjuvant chemotherapy. BIOMED RESEARCH INTERNATIONAL 2013; 2013:348167. [PMID: 23862143 PMCID: PMC3687601 DOI: 10.1155/2013/348167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 05/17/2013] [Indexed: 12/21/2022]
Abstract
Neoadjuvant chemotherapy (NAC), also termed primary, induction, or preoperative chemotherapy, is traditionally used to downstage inoperable breast cancer. In recent years it has been increasingly used for patients who have operable cancers in order to facilitate breast-conserving surgery, achieve better cosmetic outcome, and improve prognosis by reaching pathologic complete response (pCR). Many studies have demonstrated that magnetic resonance imaging (MRI) can assess residual tumor size after NAC, and that provides critical information for planning of the optimal surgery. NAC also allows for timely adjustment of administered drugs based on response, so ineffective regimens could be terminated early to spare patients from unnecessary toxicity while allowing other effective regimens to work sooner. This review article summarizes the clinical application of MRI during NAC. The use of different MR imaging methods, including dynamic contrast-enhanced MRI, proton MR spectroscopy, and diffusion-weighted MRI, to monitor and evaluate the NAC response, as well as how changes of parameters measured at an early time after initiation of a drug regimen can predict final treatment outcome, are reviewed. MRI has been proven a valuable tool and will continue to provide important information facilitating individualized image-guided treatment and personalized management for breast cancer patients undergoing NAC.
Collapse
Affiliation(s)
- Jeon-Hor Chen
- Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California, Irvine, CA 92697-5020, USA
- Department of Radiology, E-Da Hospital and I-Shou University, Kaohsiung 82445, Taiwan
| | - Min-Ying Su
- Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California, Irvine, CA 92697-5020, USA
| |
Collapse
|
20
|
Abstract
In vivo magnetic resonance spectroscopy (MRS) of the breast can be used to measure the level of choline-containing compounds, which is a biomarker of malignancy. In the diagnostic setting, MRS can provide high specificity for distinguishing benign from malignant lesions. MRS also can be used as an early response indicator in patients undergoing neoadjuvant chemotherapy. This article describes the acquisition and analysis methods used for measuring total choline levels in the breast using MRS, reviews the findings from clinical studies of diagnosis and treatment response, and discusses problems, limitations, and future developments for this promising clinical technology.
Collapse
Affiliation(s)
- Patrick J Bolan
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55419, USA.
| |
Collapse
|
21
|
Wilmes LJ, McLaughlin RL, Newitt DC, Singer L, Sinha SP, Proctor E, Wisner DJ, Saritas EU, Kornak J, Shankaranarayanan A, Banerjee S, Jones EF, Joe BN, Hylton NM. High-resolution diffusion-weighted imaging for monitoring breast cancer treatment response. Acad Radiol 2013; 20:581-9. [PMID: 23570936 PMCID: PMC4507576 DOI: 10.1016/j.acra.2013.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 12/15/2022]
Abstract
RATIONALE AND OBJECTIVES The aim of this work was to compare a high-resolution diffusion-weighted imaging (HR-DWI) acquisition (voxel size = 4.8 mm(3)) to a standard diffusion-weighted imaging (STD-DWI) acquisition (voxel size = 29.3 mm(3)) for monitoring neoadjuvant therapy-induced changes in breast tumors. MATERIALS AND METHODS Nine women with locally advanced breast cancer were imaged with both HR-DWI and STD-DWI before and after 3 weeks (early treatment) of neoadjuvant taxane-based treatment. Tumor apparent diffusion coefficient (ADC) metrics (mean and histogram percentiles) from both DWI methods were calculated, and their relationship to tumor volume change after 12 weeks of treatment (posttreatment) measured by dynamic contrast enhanced magnetic resonance imaging was evaluated with a Spearman's rank correlation. RESULTS The HR-DWI pretreatment 15th percentile tumor ADC (P = .03) and early treatment 15th, 25th, and 50th percentile tumor ADCs (P = .008, .010, .04, respectively) were significantly lower than the corresponding STD-DWI percentile ADCs. The mean tumor HR-ADC was significantly lower than STD-ADC at the early treatment time point (P = .02), but not at the pretreatment time point (P = .07). A significant early treatment increase in tumor ADC was found with both methods (P < .05). Correlations between HR-DWI tumor ADC and posttreatment tumor volume change were higher than the STD-DWI correlations at both time points and the lower percentile ADCs had the strongest correlations. CONCLUSION These initial results suggest that the HR-DWI technique has potential for improving characterization of low tumor ADC values over STD-DWI and that HR-DWI may be of value in evaluating tumor change with treatment.
Collapse
Affiliation(s)
- Lisa J Wilmes
- Department of Radiology and Biomedical Imaging, University of California, Box 1667, San Francisco, San Francisco, CA 94115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mayrhofer RM, Ng HP, Putti TC, Kuchel PW. Magnetic resonance in the detection of breast cancers of different histological types. MAGNETIC RESONANCE INSIGHTS 2013; 6:33-49. [PMID: 25114543 PMCID: PMC4089708 DOI: 10.4137/mri.s10640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Breast cancer incidence is increasing worldwide. Early detection is critical for long-term patient survival, as is monitoring responses to chemotherapy for management of the disease. Magnetic resonance imaging and spectroscopy (MRI/MRS) has gained in importance in the last decade for the diagnosis and monitoring of breast cancer therapy. The sensitivity of MRI/MRS for anatomical delineation is very high and the consensus is that MRI is more sensitive in detection than x-ray mammography. Advantages of MRS include delivery of biochemical information about tumor metabolism, which can potentially assist in the staging of cancers and monitoring responses to treatment. The roles of MRS and MRI in screening and monitoring responses to treatment of breast cancer are reviewed here. We rationalize how it is that different histological types of breast cancer are differentially detected and characterized by MR methods.
Collapse
Affiliation(s)
- Rebecca M Mayrhofer
- Mechanistic Systemsbiology NMR Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore
| | - Hsiao Piau Ng
- Mechanistic Systemsbiology NMR Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore
| | - Thomas C Putti
- Department of Pathology, National University Hospital, Singapore
| | - Philip W Kuchel
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia
| |
Collapse
|
23
|
Blankenberg FG, Strauss HW. Recent Advances in the Molecular Imaging of Programmed Cell Death: Part II—Non–Probe-Based MRI, Ultrasound, and Optical Clinical Imaging Techniques. J Nucl Med 2012; 54:1-4. [DOI: 10.2967/jnumed.112.111740] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
24
|
Abstract
The efficiency of an oncological treatment regimen is often assessed by morphological criteria such as tumour size evaluated by cross-sectional imaging, or by laboratory measurements of plasma biomarkers. Because these types of measures typically allow for assessment of treatment response several weeks or even months after the start of therapy, earlier response assessment that provides insight into tumour function is needed. This is particularly urgent for the evaluation of newer targeted therapies and for fractionated therapies that are delivered over a period of weeks to allow for a change of treatment in non-responding patients. Diffusion-weighted MRI (DW-MRI) is a non-invasive imaging tool that does not involve radiation or contrast media, and is sensitive to tissue microstructure and function on a cellular level. DW-MRI parameters have shown sensitivity to treatment response in a growing number of tumour types and organ sites, with additional potential as predictive parameters for treatment outcome. A brief overview of DW-MRI principles is provided here, followed by a review of recent literature in which DW-MRI has been used to monitor and predict tumour response to various therapeutic regimens.
Collapse
Affiliation(s)
- Lauren J Bains
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital, University of Bern, Switzerland
| | | | | |
Collapse
|
25
|
Bonekamp S, Corona-Villalobos CP, Kamel IR. Oncologic applications of diffusion-weighted MRI in the body. J Magn Reson Imaging 2012; 35:257-79. [PMID: 22271274 DOI: 10.1002/jmri.22786] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Diffusion-weighted MRI (DWI) allows the detection of malignancies in the abdomen and pelvis. Lesion detection and characterization using DWI largely depends on the increased cellularity of solid or cystic lesions compared with the surrounding tissue. This increased cellularity leads results in restricted diffusion as indicated by reduction in the apparent diffusion coefficient (ADC). Low pretreatment ADC values of several malignancies have been shown to be predictive of better outcome. DWI can assess response to systemic or regional treatment of cancer at a cellular level and will therefore detect successful treatment earlier than anatomical measures. In this review, we provide a brief technical overview of DWI, discuss quantitative image analysis approaches, and review studies which have used DWI for the purpose of detection and characterization of malignancies as well as the early prediction of treatment response.
Collapse
Affiliation(s)
- Susanne Bonekamp
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | | | | |
Collapse
|
26
|
Singer L, Wilmes LJ, Saritas EU, Shankaranarayanan A, Proctor E, Wisner DJ, Chang B, Joe BN, Nishimura DG, Hylton NM. High-resolution diffusion-weighted magnetic resonance imaging in patients with locally advanced breast cancer. Acad Radiol 2012; 19:526-34. [PMID: 22197382 DOI: 10.1016/j.acra.2011.11.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 09/10/2011] [Accepted: 11/08/2011] [Indexed: 11/18/2022]
Abstract
RATIONALE AND OBJECTIVES The aim of this study was to evaluate differences in tumor depiction and measured tumor apparent diffusion coefficient (ADC) with the use of a high-resolution diffusion-weighted (DW) magnetic resonance imaging (MRI) sequence, compared to a standard DW MRI sequence, in patients with locally advanced breast cancer. MATERIALS AND METHODS Patients with locally advanced breast cancer were scanned with a reduced-field of view (rFOV) DW MRI sequence (high resolution) and a standard-field of view diffusion sequence (standard resolution), and differences between the two sequences were evaluated quantitatively (by calculating tumor ADC distribution parameters) and qualitatively (by radiologists' visual assessments of images). RESULTS Although the mean tumor ADC for both sequences was similar, differences were found in other parameters, including the 12.5th percentile (P = .042) and minimum tumor ADC (P = .003). Qualitatively, visualization of tumor morphologic detail, heterogeneity, and conspicuity was improved with rFOV DW MRI, and image quality was higher. CONCLUSIONS Differences in ADC distribution parameters and qualitative image features suggest that the sequences differ in their ability to capture tumor heterogeneity. These differences are not apparent when the mean is used to evaluate tumor ADC. In particular, differences found in lower ADC values are compatible with reduced partial voluming in rFOV DW MRI, suggesting that rFOV DW MRI may be valuable in imaging the lower ADCs expected to correspond to viable tumor in most invasive breast cancers.
Collapse
Affiliation(s)
- Lisa Singer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 1600 Divisadero Street, Box 1667, San Francisco, CA 94115-1667, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wu LM, Hu JN, Gu HY, Hua J, Chen J, Xu JR. Can diffusion-weighted MR imaging and contrast-enhanced MR imaging precisely evaluate and predict pathological response to neoadjuvant chemotherapy in patients with breast cancer? Breast Cancer Res Treat 2012; 135:17-28. [PMID: 22476850 DOI: 10.1007/s10549-012-2033-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 03/13/2012] [Indexed: 12/16/2022]
Abstract
Clinical evidence regarding the value of MRI for therapy responses assessment in breast cancer is increasing. The objective of this study is to compare the diagnostic capability of diffusion-weighted MR imaging (DW-MRI) and contrast-enhanced MR imaging (CE-MRI) to evaluate and predict pathological response in breast cancer patients receiving neoadjuvant chemotherapy (NAC). We performed a meta-analysis of all available studies of the diagnostic performance of DW-MRI or CE-MRI to evaluate and predict pathological response to NAC in patients with breast cancer. We determined sensitivities and specificities across studies, calculated positive and negative likelihood ratios (LR+ and LR-), diagnostic odds ratio (DOR) and constructed summary receiver operating characteristic curves using hierarchical regression models. Methodological quality was assessed by QUADAS tool. Thirty-four studies met the inclusion criteria and involved 1,932 pathologically confirmed patients in total. Methodological quality was relatively high. DW-MRI sensitivity was 0.93 (95 % CI 0.82-0.97) and specificity was 0.82 (95 % CI 0.70-0.90). Overall LR+ was 5.09 (95 % CI 3.09-8.38), LR- was 0.09 (95 % CI 0.04-0.22), and DOR was 55.59 (95 % CI 21.80-141.80). CE-MRI sensitivity was 0.68 (95 % CI 0.57-0.77) and specificity was 0.91 (95 % CI 0.87-0.94). Overall LR+ was 7.48 (95 % CI 5.29-10.57), LR- was 0.36 (95 % CI 0.27-0.48), and DOR was 20.98 (95 % CI 13.24-33.24). Our study confirms that DW-MRI is a high sensitive and CE-MRI is a high specific modality in predicting pathological response to NAC in breast cancer patients. The combined use of DW-MRI and CE-MRI has the potential to improve the diagnostic performance in monitoring NAC. Further large prospective studies are warranted to assess the actual value of this combination in breast cancer preoperative treatment screening.
Collapse
Affiliation(s)
- Lian-Ming Wu
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 1630, Dongfang Road, Pudong, Shanghai 200127, China
| | | | | | | | | | | |
Collapse
|
28
|
Tozaki M. Appropriate timing of proton MR spectroscopy in breast cancer. Magn Reson Med Sci 2011; 10:71-7. [PMID: 21720108 DOI: 10.2463/mrms.10.71] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Proton magnetic resonance (MR) spectroscopy (MRS) of the mammary gland region has customarily been used in basic research but is now commonly performed in clinical practice as MR techniques have improved. To debate its usefulness in a variety of fields and ultimately grade the timing of its use, a symposium entitled "Clinical Application and the Latest Technology of MRS-Timing of the Addition of MRS" was presented in 2009 at the 37th Annual Meeting of the Japanese Society for Magnetic Resonance in Medicine (JSMRM). MRS timing was classified into 3 grades according to when its addition: is always better, Grade 1; will sometimes be effective, Grade 2; and can provide only supplemental information, Grade 3. We describe the content of the meeting session on "Timing of the Addition of MRS in the Breast Cancer Field," explain the reasons for the timing classifications, and review previous papers.
Collapse
Affiliation(s)
- Mitsuhiro Tozaki
- Division of Diagnostic Imaging, Breast Center, Kameda Medical Center, Kamogawa, Chiba, Japan.
| |
Collapse
|
29
|
|
30
|
Abstract
OBJECTIVE The purposes of this review are to describe the signaling pathways of and the cellular changes that occur with apoptosis and other forms of cell death, summarize tracers and modalities used for imaging of apoptosis, delineate the relation between apoptosis and inhibition of protein translation, and describe spectroscopic technologies that entail high-frequency ultrasound and infrared and midinfrared light in characterizing the intracellular events of apoptosis. CONCLUSION Apoptosis is a highly orchestrated set of biochemical and morphologic cellular events. These events present many potential targets for the imaging of apoptosis in vivo. Imaging of apoptosis can facilitate early assessment of anticancer treatment before tumor shrinkage, which may increase the effectiveness of delivery of chemotherapy and radiation therapy and speed drug development.
Collapse
|
31
|
Sharma U, Baek HM, Su MY, Jagannathan NR. In vivo 1H MRS in the assessment of the therapeutic response of breast cancer patients. NMR IN BIOMEDICINE 2011; 24:700-11. [PMID: 21793075 PMCID: PMC4226268 DOI: 10.1002/nbm.1654] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 11/10/2010] [Accepted: 11/12/2010] [Indexed: 05/15/2023]
Abstract
MRI and in vivo MRS have rapidly evolved as sensitive tools for diagnosis and therapeutic monitoring in cancer research. In vivo MRS provides information on tumor metabolism, which is clinically valuable in the diagnosis and assessment of tumor response to therapy for the management of women with breast diseases. Several centers complement breast MRI studies with (1)H MRS to improve the specificity of diagnosis. Malignant breast tissues show elevated water-to-fat ratio and choline-containing compounds (total choline, tCho), and any effect of therapy on tissue viability or metabolism will be manifested as changes in these levels. Sequential (1)H MRS studies have shown significantly reduced tCho levels during the course of therapy in patients who were responders. However, there are challenges in using in vivo MRS because of the relatively low sensitivity in detecting the tCho resonance with decreased lesion size or significant reduction in the tumor volume during therapy. MRS is also technically challenging because of the low signal-to-noise ratio and heterogeneous distribution of fat and glandular tissues in the breast. MRS is best utilized for the diagnosis of focal masses, most commonly seen in patients with ductal-type neoplasms; however, it has limitations in detecting nonfocal masses, such as the linear pattern of tumors seen in invasive lobular carcinoma. Further work is required to assess the clinical utility of quantitative MRS, with the goal of automation, which will reduce the subjectivity currently inherent in both qualitative and semi-quantitative MRS.
Collapse
Affiliation(s)
- Uma Sharma
- Department of NMR and MRI Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Hyeon Man Baek
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Min Ying Su
- Tu & Yuen Center for Functional Onco-Imaging, University of California, Irvine, CA, USA
| | - Naranamangalam R. Jagannathan
- Department of NMR and MRI Facility, All India Institute of Medical Sciences, New Delhi, India
- Correspondence to: N. R. Jagannathan, Department of NMR and MRI Facility, All India Institute of Medical Sciences, New Delhi – 110029, India. ;
| |
Collapse
|
32
|
O'Flynn EAM, DeSouza NM. Functional magnetic resonance: biomarkers of response in breast cancer. Breast Cancer Res 2011; 13:204. [PMID: 21392409 PMCID: PMC3109577 DOI: 10.1186/bcr2815] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Functional magnetic resonance (MR) encompasses a spectrum of techniques that depict physiological and molecular processes before morphological changes are visible on conventional imaging. As understanding of the pathophysiological and biomolecular processes involved in breast malignancies evolves, newer functional MR techniques can be employed that define early predictive and surrogate biomarkers for monitoring response to chemotherapy. Neoadjuvant chemotherapy is increasingly used in women with primary breast malignancies to down-stage the tumour and enable successful breast conservation surgery. It also plays a role in the treatment of undetected micrometastases. Cardinal physiological features of tumours that occur as a result of interactions between cancer cells, stromal cells and secreted factors and cytokines and how they change with treatment provide the opportunity to detect changes in the tumour microenvironment prior to any morphological change. Through sequential imaging, tumour response can be assessed and non-responders can be identified early to enable alternative therapies to be considered. This review summarises the functional magnetic resonance biomarkers of response in patients with breast cancer that are currently available and under development. We describe the current state of each biomarker and explore their potential clinical uses and limitations in assessing treatment response. With the aid of selected interesting cases, biomarkers related to dynamic contrast-enhanced MRI, diffusion-weighted MRI, T2*/BOLD and MR spectroscopy are described and illustrated. The potential of newer approaches, such as MR elastography, are also reviewed.
Collapse
Affiliation(s)
- Elizabeth A M O'Flynn
- Clinical Magnetic Resonance Group, Institute of Cancer Research, Royal Marsden NHS Foundation Trust, Sutton, Surrey, SM2 5PT, UK.
| | | |
Collapse
|
33
|
Tozaki M, Maruyama K. Current Status and Future Prospects of Proton MR Spectroscopy of the Breast with a 1.5T MR Unit. JOURNAL OF ONCOLOGY 2010; 2010:781621. [PMID: 20953323 PMCID: PMC2952948 DOI: 10.1155/2010/781621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 09/01/2010] [Indexed: 11/17/2022]
Abstract
Proton MR spectroscopy of the mammary gland area is used to be considered in the realm of basic research, but as a result of the advances in MR techniques, it is now being performed in ordinary clinical practice. It is particularly noteworthy that useful clinical data are now being accumulated with 1.5T MR units, which are the standard units. We think that, at this point, it is very important to systematically review the techniques, clinical applications, and future prospects of proton MR spectroscopy. We have performed proton MR spectroscopy with a 1.5T MR unit in over 3000 cases at our hospital. In this paper, we will comment on the current status of proton MR spectroscopy of the breast, primarily in regard to differentiation between benign and malignant lesions and prediction of the efficacy of chemotherapy while describing the data obtained at our hospital.
Collapse
Affiliation(s)
- Mitsuhiro Tozaki
- Breast Center, Kameda Medical Center, 929 Higashi-cho, Kamogawa, Chiba 296-8602, Japan
| | - Katsuya Maruyama
- Siemens Japan K.K. Healthcare Sector, 3-20-14 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-8644, Japan
| |
Collapse
|