1
|
Zheng Z, Ai Z, Liang Y, Li Y, Wu Z, Wu M, Han Q, Ma K, Xiang Z. Clinical value of deep learning image reconstruction on the diagnosis of pulmonary nodule for ultra-low-dose chest CT imaging. Clin Radiol 2024; 79:628-636. [PMID: 38749827 DOI: 10.1016/j.crad.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 04/15/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE To compare the image quality and pulmonary nodule detectability between deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction-Veo (ASIR-V) in ultra-low-dose CT (ULD-CT). METHODS 142 participants required lung examination who underwent simultaneously ULD-CT (UL-A, 0.57 ± 0.04 mSv or UL-B, 0.33 ± 0.03 mSv), and standard CT (SDCT, 4.32 ± 0.33 mSv) plain scans were included in this prospective study. SDCT was the reference standard using ASIR-V at 50% strength (50%ASIR-V). ULD-CT was reconstructed with 50%ASIR-V, DLIR at medium and high strength (DLIR-M, DLIR-H). The noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and subjective scores were measured. The presence and accuracy of nodules were analyzed using a combination of a deep learning-based nodule evaluation system and a radiologist. RESULTS A total of 710 nodules were detected by SDCT, including 358 nodules in UL-A and 352 nodules in UL-B. DLIR-H exhibited superior noise, SNR, and CNR performance, and achieved comparable or even higher subjective scores compared to 50%ASIR-V in ULD-CT. Nodules sensitivity detection of 50%ASIR-V, DLIR-M, and DLIR-H in ULD-CT were identical (96.90%). In multivariate analysis, body mass index (BMI), nodule diameter, and type were independent predictors for the sensitivity of nodule detection (p<.001). DLIR-H provided a lower absolute percent error (APE) in volume (3.10% ± 95.11% vs 8.29% ± 99.14%) compared to 50%ASIR-V of ULD-CT (P<.001). CONCLUSIONS ULD-CT scanning has a high sensitivity for detecting pulmonary nodules. Compared with ASIR-V, DLIR can significantly reduce image noise, and improve image quality, and accuracy of the nodule measurement in ULD-CT.
Collapse
Affiliation(s)
- Z Zheng
- Postgraduate Cultivation Base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou, China; Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China.
| | - Z Ai
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China.
| | - Y Liang
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China.
| | - Y Li
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China.
| | - Z Wu
- Postgraduate Cultivation Base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou, China; Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China.
| | - M Wu
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China.
| | - Q Han
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China.
| | - K Ma
- CT Imaging Research Center, GE HealthCare China, Guangzhou, China.
| | - Z Xiang
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China.
| |
Collapse
|
2
|
Guedes Pinto E, Penha D, Ravara S, Monaghan C, Hochhegger B, Marchiori E, Taborda-Barata L, Irion K. Factors influencing the outcome of volumetry tools for pulmonary nodule analysis: a systematic review and attempted meta-analysis. Insights Imaging 2023; 14:152. [PMID: 37741928 PMCID: PMC10517915 DOI: 10.1186/s13244-023-01480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/08/2023] [Indexed: 09/25/2023] Open
Abstract
Health systems worldwide are implementing lung cancer screening programmes to identify early-stage lung cancer and maximise patient survival. Volumetry is recommended for follow-up of pulmonary nodules and outperforms other measurement methods. However, volumetry is known to be influenced by multiple factors. The objectives of this systematic review (PROSPERO CRD42022370233) are to summarise the current knowledge regarding factors that influence volumetry tools used in the analysis of pulmonary nodules, assess for significant clinical impact, identify gaps in current knowledge and suggest future research. Five databases (Medline, Scopus, Journals@Ovid, Embase and Emcare) were searched on the 21st of September, 2022, and 137 original research studies were included, explicitly testing the potential impact of influencing factors on the outcome of volumetry tools. The summary of these studies is tabulated, and a narrative review is provided. A subset of studies (n = 16) reporting clinical significance were selected, and their results were combined, if appropriate, using meta-analysis. Factors with clinical significance include the segmentation algorithm, quality of the segmentation, slice thickness, the level of inspiration for solid nodules, and the reconstruction algorithm and kernel in subsolid nodules. Although there is a large body of evidence in this field, it is unclear how to apply the results from these studies in clinical practice as most studies do not test for clinical relevance. The meta-analysis did not improve our understanding due to the small number and heterogeneity of studies testing for clinical significance. CRITICAL RELEVANCE STATEMENT: Many studies have investigated the influencing factors of pulmonary nodule volumetry, but only 11% of these questioned their clinical relevance in their management. The heterogeneity among these studies presents a challenge in consolidating results and clinical application of the evidence. KEY POINTS: • Factors influencing the volumetry of pulmonary nodules have been extensively investigated. • Just 11% of studies test clinical significance (wrongly diagnosing growth). • Nodule size interacts with most other influencing factors (especially for smaller nodules). • Heterogeneity among studies makes comparison and consolidation of results challenging. • Future research should focus on clinical applicability, screening, and updated technology.
Collapse
Affiliation(s)
- Erique Guedes Pinto
- R. Marquês de Ávila E Bolama, Universidade da Beira Interior Faculdade de Ciências da Saúde, 6201-001, Covilhã, Portugal.
| | - Diana Penha
- R. Marquês de Ávila E Bolama, Universidade da Beira Interior Faculdade de Ciências da Saúde, 6201-001, Covilhã, Portugal
- Liverpool Heart and Chest Hospital NHS Foundation Trust, Thomas Dr, Liverpool, L14 3PE, UK
| | - Sofia Ravara
- R. Marquês de Ávila E Bolama, Universidade da Beira Interior Faculdade de Ciências da Saúde, 6201-001, Covilhã, Portugal
| | - Colin Monaghan
- Liverpool Heart and Chest Hospital NHS Foundation Trust, Thomas Dr, Liverpool, L14 3PE, UK
| | | | - Edson Marchiori
- Faculdade de Medicina, Universidade Federal Do Rio de Janeiro, Bloco K - Av. Carlos Chagas Filho, 373 - 2º Andar, Sala 49 - Cidade Universitária da Universidade Federal Do Rio de Janeiro, Rio de Janeiro - RJ, 21044-020, Brasil
- Faculdade de Medicina, Universidade Federal Fluminense, Av. Marquês Do Paraná, 303 - Centro, Niterói - RJ, 24220-000, Brasil
| | - Luís Taborda-Barata
- R. Marquês de Ávila E Bolama, Universidade da Beira Interior Faculdade de Ciências da Saúde, 6201-001, Covilhã, Portugal
| | - Klaus Irion
- Manchester University NHS Foundation Trust, Manchester Royal Infirmary, Oxford Rd, Manchester, M13 9WL, UK
| |
Collapse
|
3
|
Wu YJ, Shi QT, Zhang Y, Wang YL. Thoracoscopic segmentectomy and lobectomy assisted by three-dimensional computed-tomography bronchography and angiography for the treatment of primary lung cancer. World J Clin Cases 2021; 9:10494-10506. [PMID: 35004981 PMCID: PMC8686156 DOI: 10.12998/wjcc.v9.i34.10494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/20/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Anatomical segmentectomy has been proposed as a substitution for lobectomy for early-stage lung cancer. However, it requires technical meticulousness due to the complex anatomical variations of segmental vessels and bronchi.
AIM To assess the safety and feasibility of three-dimensional computed-tomography bronchography and angiography (3D-CTBA) in performing video-assisted thoracoscopic surgery (VATS) for lung cancers.
METHODS In this study, we enrolled 123 patients who consented to undergo thoracoscopic segmentectomy and lobectomy assisted by 3D-CTBA between May 2017 and June 2019. The image data of enhanced computed tomography (CT) scans was reconstructed three-dimensionally by the Mimics software. The results of preoperative 3D-CTBA, in combination with intraoperative navigation, guided the surgery.
RESULTS A total of 59 women and 64 men were enrolled, of whom 57 (46.3%) underwent segmentectomy and 66 (53.7%) underwent lobectomy. The majority of tumor appearance on CT was part-solid ground-glass nodule (pGGN; 55.3%). The mean duration of chest tube placement was 3.5 ± 1.6 d, and the average length of postoperative hospital stay was 6.8 ± 1.8 d. Surgical complications included one case of pneumonia and four cases of prolonged air leak lasting > 5 d. Notably, there was no intraoperative massive hemorrhage, postoperative intensive-care unit stay, or 30-d mortality. Preoperative 3D-CTBA images can display clearly and vividly the targeted structure and the variations of vessels and bronchi. To reduce the risk of locoregional recurrence, the application of 3D-CTBA with a virtual 3D surgical margin help the VATS surgeon determine accurate distances and positional relations among the tumor, bronchial trees, and the intersegmental vessels. Three-dimensional navigation was performed to confirm the segmental structure, precisely cut off the targeted segment, and avoid intersegmental veins injury.
CONCLUSION VATS and 3D-CTBA worked in harmony in our study. This combination also provided a new pattern of transition from lesion-directed location of tumors to computer-aided surgery for the management of early lung cancer.
Collapse
Affiliation(s)
- Yun-Jiang Wu
- Department of Thoracic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Qing-Tong Shi
- Department of Thoracic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Yong Zhang
- Department of Radiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Ya-Li Wang
- Department of Respiratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
4
|
|
5
|
Divisi D, Barone M, Bertolaccini L, Zaccagna G, Gabriele F, Crisci R. Diagnostic performance of fluorine-18 fluorodeoxyglucose positron emission tomography in the management of solitary pulmonary nodule: a meta-analysis. J Thorac Dis 2018; 10:S779-S789. [PMID: 29780624 DOI: 10.21037/jtd.2017.12.126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background In the setting of solitary pulmonary nodules (SPNs), fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) is considered a useful non-invasive diagnostic tool though false positive (FP) and false negative (FN) results affects accuracy due to different conditions, such as inflammatory diseases or low-uptake neoplasms. Aim of this study is to evaluate overall diagnostic performance of 18F-FDG-PET/CT for malignant pulmonary nodules. Methods A computerized research, including published articles from 2012 and 2017, was carried out. 18F-FDG-PET/CT overall sensitivity (Se), specificity (Spe), positive likelihood ratio (PLR), negative likelihood ratio (NLR), positive predictive value (PPV), negative predictive value (NPV), diagnostic index and odds ratio were pooled. No selection-bias were found according to asymmetry test. Results A total of twelve studies were included in the meta-analysis. The pooled Se, Spe, PLR, NLR, PPV, NPV and accuracy index (AI) with relative 95% confidence intervals (CI) were 0.819 (95% CI: 0.794-0.843), 0.624 (95% CI: 0.582-0.665), 2.190 (95% CI: 1.950-2.440), 0.290 (95% CI: 0.250-0.330), 0.802 (95% CI: 0.783-0.819), 0.652 (95% CI: 0.618-0.684) and 0.649 (95% CI: 0.625-0.673), respectively. The diagnostic odds ratio (DOR) was 7.049 with a relative 95% CI between 5.550 and 8.944. Conclusions The results suggest 18F-FDG-PET/CT has good diagnostic accuracy in SPNs evaluation; but, it should not be considered as a discriminatory test rather than a method to be included in a clinical and diagnostic pathway.
Collapse
Affiliation(s)
- Duilio Divisi
- Thoracic Surgery Unit, University of L'Aquila, "G. Mazzini" Hospital, Teramo Italy
| | - Mirko Barone
- Thoracic Surgery Unit, University of L'Aquila, "G. Mazzini" Hospital, Teramo Italy
| | | | - Gino Zaccagna
- Thoracic Surgery Unit, University of L'Aquila, "G. Mazzini" Hospital, Teramo Italy
| | - Francesca Gabriele
- Thoracic Surgery Unit, University of L'Aquila, "G. Mazzini" Hospital, Teramo Italy
| | - Roberto Crisci
- Thoracic Surgery Unit, University of L'Aquila, "G. Mazzini" Hospital, Teramo Italy
| |
Collapse
|
6
|
Chen B, Zhang R, Gan Y, Yang L, Li W. Development and clinical application of radiomics in lung cancer. Radiat Oncol 2017; 12:154. [PMID: 28915902 PMCID: PMC5602916 DOI: 10.1186/s13014-017-0885-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/01/2017] [Indexed: 02/05/2023] Open
Abstract
Since the discovery of X-rays at the end of the 19th century, medical imageology has progressed for 100 years, and medical imaging has become an important auxiliary tool for clinical diagnosis. With the launch of the human genome project (HGP) and the development of various high-throughput detection techniques, disease exploration in the post-genome era has extended beyond investigations of structural changes to in-depth analyses of molecular abnormalities in tissues, organs and cells, on the basis of gene expression and epigenetics. These techniques have given rise to genomics, proteomics, metabolomics and other systems biology subspecialties, including radiogenomics. Radiogenomics is an important revolution in the traditional visually identifiable imaging technology and constitutes a new branch, radiomics. Radiomics is aimed at extracting quantitative imaging features automatically and developing models to predict lesion phenotypes in a non-invasive manner. Here, we summarize the advent and development of radiomics, the basic process and challenges in clinical practice, with a focus on applications in pulmonary nodule evaluations, including diagnostics, pathological and molecular classifications, treatment response assessments and prognostic predictions, especially in radiotherapy.
Collapse
Affiliation(s)
- Bojiang Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan, 610041, China
| | - Rui Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan, 610041, China
| | - Yuncui Gan
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan, 610041, China
| | - Lan Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan, 610041, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
7
|
Kim H, Park CM, Chae HD, Lee SM, Goo JM. Impact of radiation dose and iterative reconstruction on pulmonary nodule measurements at chest CT: a phantom study. Diagn Interv Radiol 2016; 21:459-65. [PMID: 26359871 DOI: 10.5152/dir.2015.14541] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE We aimed to identify the impact of radiation dose and iterative reconstruction (IR) on measurement of pulmonary nodules by chest computed tomography (CT). METHODS CT scans were performed on a chest phantom containing various nodules (diameters of 3, 5, 8, 10, and 12 mm; +100, -630 and -800 HU for each diameter) at 80, 100, 120 kVp and 10, 20, 50, 100 mAs (a total of 12 radiation dose settings). Each CT was reconstructed using filtered back projection, iDose4, and iterative model reconstruction (IMR). Thereafter, two radiologists measured the diameter and attenuation of the nodules. Noise, contrast-to-noise ratio and signal-to-noise ratio of CT images were also obtained. Influence of radiation dose and reconstruction algorithm on measurement error and objective image quality metrics was analyzed using generalized estimating equations. RESULTS The 80 kVp, 10 mAs CT scan was not feasible for the measurement of 3 mm sized simulated ground-glass nodule (GGN); otherwise, diameter measurement error was not significantly influenced by radiation dose (P > 0.05). IR did not have a significant impact on diameter measurement error for simulated solid nodules (P > 0.05). However, for simulated GGNs, IMR was associated with significantly decreased relative diameter measurement error (P < 0.001). Attenuation measurement error was not significantly influenced by either radiation dose or reconstruction algorithm (P > 0.05). Objective image quality was significantly better with IMR (P < 0.05). CONCLUSION Nodule measurements were not affected by radiation dose except for 3 mm simulated GGN on 80 kVp, 10 mAs dose setting. However, for GGNs, IMR may help reduce diameter measurement error while improving image quality.
Collapse
Affiliation(s)
- Hyungjin Kim
- Department of Radiology, College of Medicine, and Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Korea; Aerospace Medical Group, Air Force Education and Training Command, Jinju, Korea.
| | | | | | | | | |
Collapse
|
8
|
Pulmonary Nodule Volumetry at Different Low Computed Tomography Radiation Dose Levels With Hybrid and Model-Based Iterative Reconstruction. J Comput Assist Tomogr 2016; 40:578-83. [DOI: 10.1097/rct.0000000000000408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Sakai N, Yabuuchi H, Kondo M, Kojima T, Nagatomo K, Kawanami S, Kamitani T, Yonezawa M, Nagao M, Honda H. Volumetric measurement of artificial pure ground-glass nodules at low-dose CT: Comparisons between hybrid iterative reconstruction and filtered back projection. Eur J Radiol 2015; 84:2654-62. [DOI: 10.1016/j.ejrad.2015.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 07/28/2015] [Accepted: 08/30/2015] [Indexed: 11/27/2022]
|
10
|
Hwang SH, Oh YW, Ham SY, Kang EY, Lee KY. Effect of the high-pitch mode in dual-source computed tomography on the accuracy of three-dimensional volumetry of solid pulmonary nodules: a phantom study. Korean J Radiol 2015; 16:641-7. [PMID: 25995695 PMCID: PMC4435995 DOI: 10.3348/kjr.2015.16.3.641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/16/2015] [Indexed: 12/05/2022] Open
Abstract
Objective To evaluate the influence of high-pitch mode (HPM) in dual-source computed tomography (DSCT) on the accuracy of three-dimensional (3D) volumetry for solid pulmonary nodules. Materials and Methods A lung phantom implanted with 45 solid pulmonary nodules (n = 15 for each of 4-mm, 6-mm, and 8-mm in diameter) was scanned twice, first in conventional pitch mode (CPM) and then in HPM using DSCT. The relative percentage volume errors (RPEs) of 3D volumetry were compared between the HPM and CPM. In addition, the intermode volume variability (IVV) of 3D volumetry was calculated. Results In the measurement of the 6-mm and 8-mm nodules, there was no significant difference in RPE (p > 0.05, respectively) between the CPM and HPM (IVVs of 1.2 ± 0.9%, and 1.7 ± 1.5%, respectively). In the measurement of the 4-mm nodules, the mean RPE in the HPM (35.1 ± 7.4%) was significantly greater (p < 0.01) than that in the CPM (18.4 ± 5.3%), with an IVV of 13.1 ± 6.6%. However, the IVVs were in an acceptable range (< 25%), regardless of nodule size. Conclusion The accuracy of 3D volumetry with HPM for solid pulmonary nodule is comparable to that with CPM. However, the use of HPM may adversely affect the accuracy of 3D volumetry for smaller (< 5 mm in diameter) nodule.
Collapse
Affiliation(s)
- Sung Ho Hwang
- Department of Radiology, Korea University Anam Hospital, Seoul 136-705, Korea
| | - Yu-Whan Oh
- Department of Radiology, Korea University Anam Hospital, Seoul 136-705, Korea
| | - Soo-Youn Ham
- Department of Radiology, Korea University Anam Hospital, Seoul 136-705, Korea
| | - Eun-Young Kang
- Department of Radiology, Korea University Guro Hospital, Seoul 152-703, Korea
| | - Ki Yeol Lee
- Department of Radiology, Korea University Ansan Hospital, Ansan 425-707, Korea
| |
Collapse
|
11
|
Kim H, Park CM, Song YS, Lee SM, Goo JM. Influence of radiation dose and iterative reconstruction algorithms for measurement accuracy and reproducibility of pulmonary nodule volumetry: A phantom study. Eur J Radiol 2014; 83:848-57. [DOI: 10.1016/j.ejrad.2014.01.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/24/2014] [Accepted: 01/26/2014] [Indexed: 11/26/2022]
|