1
|
Tabari A, Patino M, Westra SJ, Shailam R, Sagar P, Sahani DV, Nimkin K, Gee MS. Initial clinical experience with high-pitch dual-source CT as a rapid technique for thoraco-abdominal evaluation in awake infants and young children. Clin Radiol 2019; 74:977.e9-977.e15. [PMID: 31561835 DOI: 10.1016/j.crad.2019.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 08/23/2019] [Indexed: 10/26/2022]
Abstract
AIM To evaluate dual-source high-pitch computed tomography (HPCT) imaging of the chest and abdomen as a rapid scanning technique to obtain diagnostic-quality imaging evaluation of infants and young children without sedation. MATERIALS AND METHODS Fifty-three paediatric patients (age 24.1±2 months) who underwent chest or abdomen HPCT (≥1.5) and standard pitch CT (SPCT, <1.5) on a dual-source 128-row multidetector CT system were included in the study. Image quality assessment was performed by two paediatric radiologists for diagnostic confidence, image artefacts, and image noise. Objective image noise was measured. RESULTS Most of the CT examinations were performed in children who were >1 year old (n=15 and n=20) followed by ≤1 year old (n=8 and n=10) in SPCT and HPCT, respectively. The mean radiation dose (SSDE) from HPCT was 1.96±1 mGy compared to 2.2±1 mGy for SPCT (p=0.3). No major artefacts were reported and overall image quality of all HPCT examinations was acceptable diagnostically. In addition, objective image noise values were not significantly different between HPCT compared with SPCT (11±3 versus 11±5, p=0.7). CONCLUSION Ultra-fast, HPCT can be performed without the need for sedation as a potential alternative to anaesthetised magnetic resonance imaging in infants and young children.
Collapse
Affiliation(s)
- A Tabari
- Division of Pediatric Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA.
| | - M Patino
- Department of Radiology, Harvard Medical School, Boston, MA, USA; Division of Abdominal Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - S J Westra
- Division of Pediatric Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - R Shailam
- Division of Pediatric Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - P Sagar
- Division of Pediatric Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - D V Sahani
- Department of Radiology, Harvard Medical School, Boston, MA, USA; Division of Abdominal Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - K Nimkin
- Division of Pediatric Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - M S Gee
- Division of Pediatric Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|