1
|
Zhang X, Liu T, Zhang H, Zhang M. Measurements of target volumes and organs at risk using DW‑MRI in patients with central lung cancer accompanied with atelectasis. Mol Clin Oncol 2023; 18:45. [PMID: 37152713 PMCID: PMC10155240 DOI: 10.3892/mco.2023.2641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Accurate imaging-based tumor delineation is crucial for guiding the radiotherapy treatments of various solid tumors. Currently, several imaging procedures, including diffusion-weighted magnetic resonance imaging (DW-MRI), intensified computed tomography and positron emission tomography are routinely used for targeted tumor delineation. However, the performance of these imaging procedures has not yet been comprehensively evaluated. In order to address this matter, the present study was conducted in an aim to assess the use of DW-MRI in guiding radiotherapy treatments, by comparing its performance to that of other imaging procedures. Specifically, the exposure dosages to organs at risk, including the lungs, heart and spinal mencord, were evaluated using various radiotherapy regimes. The findings of the present study demonstrated that DW-MRI is a non-invasive and cost-effective imaging procedure that can be used to reduce lung exposure doses, minimizing the risk of radiation pneumonitis. The data further demonstrate the immense potential of the DW-MRI procedure in the precision radiotherapy of lung cancers.
Collapse
Affiliation(s)
- Xinli Zhang
- Department of Medical Oncology, The Affiliated Tai'an City Central Hospital of Qingdao University, Tai'an, Shandong 271000, P.R. China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, Shandong 250117, P.R. China
| | - Tong Liu
- Department of Stomatology, The Affiliated Tai'an City Central Hospital of Qingdao University, Tai'an, Shandong 271000, P.R. China
| | - Hong Zhang
- Department of Medical Oncology, The Affiliated Tai'an City Central Hospital of Qingdao University, Tai'an, Shandong 271000, P.R. China
| | - Mingbin Zhang
- Department of Stomatology, The Affiliated Tai'an City Central Hospital of Qingdao University, Tai'an, Shandong 271000, P.R. China
- Correspondence to: Dr Mingbin Zhang, Department of Stomatology, The Affiliated Tai'an City Central Hospital of Qingdao University, 29 Longtan Road, Tai'an, Shandong 271000, P.R. China
| |
Collapse
|
2
|
Diffusion-Weighted Imaging as a Quantitative Imaging Biomarker for Predicting Proliferation Rate in Hepatocellular Carcinoma: Developing a Radiomics Nomogram. J Comput Assist Tomogr 2023:00004728-990000000-00132. [PMID: 36877762 DOI: 10.1097/rct.0000000000001448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
PURPOSE This study aimed to explore the predictive performance of diffusion-weighted imaging with apparent diffusion coefficient map in predicting the proliferation rate of hepatocellular carcinoma and to develop a radiomics-based nomogram. METHODS This was a single-center retrospective study. A total of 110 patients were enrolled. The sample included 38 patients with low Ki67 expression (Ki67 ≤10%) and 72 with high Ki67 expression (Ki67 >10%) as demonstrated by surgical pathology. Patients were randomly divided into either a training (n = 77) or validation (n = 33) cohort. Diffusion-weighted imaging with apparent diffusion coefficient maps was used to extract radiomic features and the signal intensity values of tumor (SItumor), normal liver (SIliver), and background noise (SIbackground) from all samples. Subsequently, the clinical model, radiomic model, and fusion model (with clinical data and radiomic signature) were developed and validated. RESULTS The area under the curve (AUC) of the clinical model for predicting the Ki67 expression including serum α-fetoprotein level (P = 0.010), age (P = 0.015), and signal noise ratio (P = 0.026) was 0.799 and 0.715 in training and validation cohorts, respectively. The AUC of the radiomic model constructed by 9 selected radiomic features was 0.833 and 0.772 in training and validation cohorts, respectively. The AUC of the fusion model containing serum α-fetoprotein level (P = 0.011), age (P = 0.019), and rad score (P < 0.001) was 0.901 and 0.781 in training and validation cohorts, respectively. CONCLUSIONS Diffusion-weighted imaging as a quantitative imaging biomarker can predict Ki67 expression level in hepatocellular carcinoma across various models.
Collapse
|
3
|
Nadarevic T, Colli A, Giljaca V, Fraquelli M, Casazza G, Manzotti C, Štimac D, Miletic D. Magnetic resonance imaging for the diagnosis of hepatocellular carcinoma in adults with chronic liver disease. Cochrane Database Syst Rev 2022; 5:CD014798. [PMID: 35521901 PMCID: PMC9074390 DOI: 10.1002/14651858.cd014798.pub2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hepatocellular carcinoma occurs mostly in people with chronic liver disease and ranks sixth in terms of global incidence of cancer, and third in terms of cancer deaths. In clinical practice, magnetic resonance imaging (MRI) is used as a second-line diagnostic imaging modality to confirm the presence of focal liver lesions suspected as hepatocellular carcinoma on prior diagnostic test such as abdominal ultrasound or alpha-fetoprotein, or both, either in surveillance programmes or in clinical settings. According to current guidelines, a single contrast-enhanced imaging study (computed tomography (CT) or MRI) showing typical hallmarks of hepatocellular carcinoma in people with cirrhosis is considered valid to diagnose hepatocellular carcinoma. The detection of hepatocellular carcinoma amenable to surgical resection could improve the prognosis. However, a significant number of hepatocellular carcinomas do not show typical hallmarks on imaging modalities, and hepatocellular carcinoma may, therefore, be missed. There is no clear evidence of the benefit of surveillance programmes in terms of overall survival: the conflicting results can be a consequence of inaccurate detection, ineffective treatment, or both. Assessing the diagnostic accuracy of MRI may clarify whether the absence of benefit could be related to underdiagnosis. Furthermore, an assessment of the accuracy of MRI in people with chronic liver disease who are not included in surveillance programmes is needed for either ruling out or diagnosing hepatocellular carcinoma. OBJECTIVES Primary: to assess the diagnostic accuracy of MRI for the diagnosis of hepatocellular carcinoma of any size and at any stage in adults with chronic liver disease. Secondary: to assess the diagnostic accuracy of MRI for the diagnosis of resectable hepatocellular carcinoma in adults with chronic liver disease, and to identify potential sources of heterogeneity in the results. SEARCH METHODS We searched the Cochrane Hepato-Biliary Group Controlled Trials Register, the Cochrane Hepato-Biliary Group Diagnostic Test of Accuracy Studies Register, the Cochrane Library, MEDLINE, Embase, and three other databases to 9 November 2021. We manually searched articles retrieved, contacted experts, handsearched abstract books from meetings held during the last 10 years, and searched for literature in OpenGrey (9 November 2021). Further information was requested by e-mails, but no additional information was provided. No data was obtained through correspondence with investigators. We applied no language or document-type restrictions. SELECTION CRITERIA Studies assessing the diagnostic accuracy of MRI for the diagnosis of hepatocellular carcinoma in adults with chronic liver disease, with cross-sectional designs, using one of the acceptable reference standards, such as pathology of the explanted liver and histology of resected or biopsied focal liver lesion with at least a six-month follow-up. DATA COLLECTION AND ANALYSIS At least two review authors independently screened studies, extracted data, and assessed the risk of bias and applicability concerns, using the QUADAS-2 checklist. We presented the results of sensitivity and specificity, using paired forest plots, and we tabulated the results. We used a hierarchical meta-analysis model where appropriate. We presented uncertainty of the accuracy estimates using 95% confidence intervals (CIs). We double-checked all data extractions and analyses. MAIN RESULTS We included 34 studies, with 4841 participants. We judged all studies to be at high risk of bias in at least one domain because most studies used different reference standards, often inappropriate to exclude the presence of the target condition, and the time interval between the index test and the reference standard was rarely defined. Regarding applicability, we judged 15% (5/34) of studies to be at low concern and 85% (29/34) of studies to be at high concern mostly owing to characteristics of the participants, most of whom were on waiting lists for orthotopic liver transplantation, and due to pathology of the explanted liver being the only reference standard. MRI for hepatocellular carcinoma of any size and stage: sensitivity 84.4% (95% CI 80.1% to 87.9%) and specificity 93.8% (95% CI 90.1% to 96.1%) (34 studies, 4841 participants; low-certainty evidence). MRI for resectable hepatocellular carcinoma: sensitivity 84.3% (95% CI 77.6% to 89.3%) and specificity 92.9% (95% CI 88.3% to 95.9%) (16 studies, 2150 participants; low-certainty evidence). The observed heterogeneity in the results remains mostly unexplained. The sensitivity analyses, which included only studies with clearly prespecified positivity criteria and only studies in which the reference standard results were interpreted without knowledge of the results of the index test, showed no variation in the results. AUTHORS' CONCLUSIONS We found that using MRI as a second-line imaging modality to diagnose hepatocellular carcinoma of any size and stage, 16% of people with hepatocellular carcinoma would be missed, and 6% of people without hepatocellular carcinoma would be unnecessarily treated. For resectable hepatocellular carcinoma, we found that 16% of people with resectable hepatocellular carcinoma would improperly not be resected, while 7% of people without hepatocellular carcinoma would undergo inappropriate surgery. The uncertainty resulting from the high risk of bias in the included studies and concerns regarding their applicability limit our ability to confidently draw conclusions based on our results.
Collapse
Affiliation(s)
- Tin Nadarevic
- Department of Radiology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Agostino Colli
- Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Vanja Giljaca
- Department of Gastroenterology, Heart of England NHS Foundation Trust, Birmingham, UK
| | - Mirella Fraquelli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca´ Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanni Casazza
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy
| | - Cristina Manzotti
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca´ Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Davor Štimac
- Department of Gastroenterology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Damir Miletic
- Department of Radiology , Clinical Hospital Centre Rijeka, Rijeka, Croatia
| |
Collapse
|
4
|
Ichikawa S, Motosugi U, Sato K, Shimizu T, Wakayama T, Onishi H. Transient Respiratory-motion Artifact and Scan Timing during the Arterial Phase of Gadoxetate Disodium-enhanced MR Imaging: The Benefit of Shortened Acquisition and Multiple Arterial Phase Acquisition. Magn Reson Med Sci 2021; 20:280-289. [PMID: 32863326 PMCID: PMC8424022 DOI: 10.2463/mrms.mp.2020-0064] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose: To investigate whether shortened acquisition or multiple arterial phase acquisition improves image quality of the arterial phase compared with conventional protocol. Methods: This retrospective study was approved by the relevant Institutional Review Board. A total of 615 consecutive patients who underwent gadoxetate disodium-enhanced MRI including one of the following three sequences in three different periods were included: (i) conventional liver acquisition with volume acceleration (LAVA) (between October 2014 and January 2015, n = 149), (ii) Turbo-LAVA (between March and August 2016, n = 216), and (iii) differential sub-sampling with Cartesian ordering (DISCO) (between January and September 2015, n = 250). We monitored the respiratory bellows waveform during breath holding for each patient and recorded breath-hold fidelity of the patients. Two radiologists independently evaluated the degree of respiratory artifact and scan timing on the arterial phase and compared them between the three protocols (i.e., conventional LAVA, Turbo-LAVA, and DISCO), with conventional LAVA as control. Results: The ratio of patients with breath-hold failure was not significantly different among the three protocols (P = 0.6340 and 0.1085). Respiratory artifact was significantly lower in DISCO than in conventional LAVA (P = 0.0424), while there was no significant difference between Turbo-LAVA and conventional LAVA (P = 0.2593). The ratio of adequate scan timing and diagnosable image defined as no or mild artifact and adequate scan timing were higher in DISCO than in conventional LAVA (P = 0.0025 and 0.0019), while there was no significant difference between Turbo-LAVA and conventional LAVA (P = 0.0780 and 0.0657). Conclusion: Compared with conventional protocol, multiple arterial phase acquisition (DISCO) obtained a higher number of diagnosable images by reducing respiratory motion artifact and optimizing the scan timing of arterial phase.
Collapse
Affiliation(s)
| | - Utaroh Motosugi
- Department of Radiology, University of Yamanashi.,Department of Diagnostic Radiology, Kofu Kyoritsu Hospital
| | - Kazuyuki Sato
- Division of Radiology, University of Yamanashi Hospital
| | | | | | | |
Collapse
|
5
|
Ichikawa S, Motosugi U, Suzuki T, Shimizu T, Onishi H. Imaging features of hepatic inflammatory pseudotumor: distinction from colorectal liver metastasis using gadoxetate disodium-enhanced magnetic resonance imaging. Abdom Radiol (NY) 2020; 45:2400-2408. [PMID: 32468212 DOI: 10.1007/s00261-020-02575-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE To identify gadoxetate disodium-enhanced MRI features distinguishing hepatic IPT from CLM. METHODS From February 2008 to December 2019, 162 lesions (IPT, n = 31 and CLM, n = 131) from 94 patients (mean age 65.1 ± 12.2 years; 65 men and 29 women) were retrospectively assessed for the presence or absence of obscure boundary, rim enhancement on arterial phase (AP), persistent rim enhancement during AP to transitional phase (TP), blood vessel penetration, peritumoral parenchymal enhancement on AP, peritumoral parenchymal hypointensity on hepatobiliary phase (HBP), peritumoral parenchymal hyperintensity on T2-weighted imaging (T2WI), biliary dilatation, central hypointensity with a relatively hyperintense periphery on HBP, peripheral hyperintensity on diffusion-weighted imaging (DWI) and T2WI, and lesion to liver signal intensity ratio (SIRlesion/liver) on HBP and DWI. Relevant features for differentiating between ITP and CLM were identified by univariate and multivariate analyses. RESULTS Univariate analysis revealed significantly higher frequencies of the following features in IPT than CLM: younger age, obscure boundary, blood vessel penetration, central hypointensity with a relatively hyperintense periphery on HBP, higher SIRlesion/liver on HBP, and lower SIRlesion/liver on DWI (P < 0.001‒0.035). Rim enhancement on AP and persistent rim enhancement during AP to TP were significantly more common in CLM than in IPT (P ≤ 0.001). Multivariate analysis revealed that a central hypointensity with a relatively peripheral hyperintensity on HBP, higher SIRlesion/liver on HBP, and lower SIRlesion/liver on DWI were predictive of IPT (P = 0.003‒0.039). CONCLUSION Central hypointensity with a relatively peripheral hyperintensity on HBP and SIRlesion/liver on HBP and DWI may be reliable gadoxetate disodium-enhanced MRI features for distinguishing IPT from CLM.
Collapse
Affiliation(s)
- Shintaro Ichikawa
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Utaroh Motosugi
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan.
- Department of Diagnostic Radiology, Kofu Kyoritsu Hospital, Kofu, Japan.
| | - Tatsuya Suzuki
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Tatsuya Shimizu
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Hiroshi Onishi
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| |
Collapse
|
6
|
Ichikawa S, Isoda H, Shimizu T, Tamada D, Taura K, Togashi K, Onishi H, Motosugi U. Distinguishing intrahepatic mass-forming biliary carcinomas from hepatocellular carcinoma by computed tomography and magnetic resonance imaging using the Bayesian method: a bi-center study. Eur Radiol 2020; 30:5992-6002. [PMID: 32500195 DOI: 10.1007/s00330-020-06972-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/07/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To determine imaging hallmarks for distinguishing intrahepatic mass-forming biliary carcinomas (IMBCs) from hepatocellular carcinoma (HCC) and to validate their diagnostic ability using Bayesian statistics. METHODS Study 1 retrospectively identified clinical and imaging hallmarks that distinguish IMBCs (n = 41) from HCC (n = 247) using computed tomography (CT) and magnetic resonance imaging (MRI). Study 2 retrospectively assessed the diagnostic ability of these hallmarks to distinguish IMBCs (n = 37) from HCC (n = 111) using Bayesian statistics with images obtained from a different institution. We also assessed the diagnostic ability of the hallmarks in the patient subgroup with high diagnostic confidence (≥ 80% of post-test probability). Two radiologists independently evaluated the imaging findings in studies 1 and 2. RESULTS In study 1, arterial phase peritumoral parenchymal enhancement on CT/MRI, delayed enhancement on CT/MRI, diffusion-weighted imaging peripheral hyperintensity, and bile duct dilatation were hallmarks indicating IMBCs, whereas chronic liver disease, non-rim arterial phase hyperenhancement on CT/MRI, enhancing capsule on CT/MRI, and opposed-phase signal drop were hallmarks indicating HCC (p = 0.001-0.04). In study 2, Bayesian statistics-based post-test probability combining all hallmark features had a diagnostic accuracy of 89.2% (132/148) in distinguishing IMBCs from HCC for both readers. In the high diagnostic confidence subgroup (n = 120 and n = 124 for readers 1 and 2, respectively), the accuracy improved (95.0% (114/120) and 93.5% (116/124) for readers 1 and 2, respectively). CONCLUSIONS Combined interpretation of CT and MRI to identify hallmark features is useful in discriminating IMBCs from HCCs. High post-test probability by Bayesian statistics allows for a more reliable non-invasive diagnosis. KEY POINTS • Combined interpretation of CT and MRI to identify hallmark features was useful in discriminating intrahepatic mass-forming biliary carcinomas from hepatocellular carcinoma. • Bayesian method-based post-test probability combining all hallmark features determined in study 1 showed high (> 90%) sensitivity and specificity for distinguishing intrahepatic mass-forming biliary carcinomas from hepatocellular carcinoma. • If the post-test probability or the confidence was ≥ 80% when combining the imaging features of CT and MRI, the high specificity of > 95% was achieved without any loss of sensitivity to distinguish hepatocellular carcinoma from intrahepatic mass-forming biliary carcinomas.
Collapse
Affiliation(s)
- Shintaro Ichikawa
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan.
| | - Hiroyoshi Isoda
- Preemptive Medicine and Lifestyle-related Disease Research Center, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tatsuya Shimizu
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Daiki Tamada
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Kojiro Taura
- Department of Surgery, Graduate School of Medicine, Division Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroshi Onishi
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Utaroh Motosugi
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
- Department of Diagnostic Radiology, Kofu Kyoritsu Hospital, 1-9-1 Takara, Kofu-shi, Yamanashi, 400-0034, Japan
| |
Collapse
|
7
|
Ichikawa S, Motosugi U, Morisaka H, Kozaka K, Goshima S, Ichikawa T. Optimal Combination of Features on Gadoxetate Disodium-enhanced MR Imaging for Non-invasive Differential Diagnosis of Hepatocellular Carcinoma: The JAMP-HCC Study. Magn Reson Med Sci 2020; 20:47-59. [PMID: 32101818 PMCID: PMC7952206 DOI: 10.2463/mrms.mp.2019-0193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose: To determine the optimal combination of gadoxetate disodium-enhanced magnetic resonance imaging (MRI) findings for the diagnosis of hepatocellular carcinoma (HCC) and to compare its diagnostic ability to that of dynamic computed tomography (CT) in patients with chronic liver disease. Methods: This multi-institutional study consisted of two parts: Study 1, a retrospective study to determine the optimal combination of gadoxetate disodium-enhanced MRI findings (decision tree and logistic model) to distinguish HCC (n = 199) from benign (n = 81) or other malignant lesions (n = 95) (375 nodules in 269 patients) and Study 2, a prospective study to compare the diagnostic ability of gadoxetate disodium-enhanced MRI to distinguish HCC (n = 73) from benign (n = 15) or other malignant lesions (n = 12) with that of dynamic CT (100 nodules in 83 patients). Two radiologists independently evaluated the imaging findings (Study 1 and 2) and made a practical diagnosis (Study 2). Results: In Study 1, rim or whole enhancement on arterial phase images, signal intensities on T2-weighted/diffusion-weighted/portal venous/transitional/hepatobiliary phase images, and signal drop on opposed-phase images were independently useful for differential diagnosis. In Study 2, the accuracy, sensitivity, negative predictive value, and negative likelihood ratio of the CT decision tree (reader 2) were higher than those of MRI Model 2 (P = 0.015–0.033). There were no other significant differences in diagnostic ability (P = 0.059–1.000) and radiologist-made practical diagnosis (P = 0.059–1.000) between gadoxetate disodium-enhanced MRI and CT. Conclusion: We identified the optimal combination of gadoxetate disodium-enhanced MRI findings for HCC diagnosis. However, its diagnostic ability was not superior to that of dynamic CT.
Collapse
Affiliation(s)
| | | | - Hiroyuki Morisaka
- Department of Diagnostic Radiology, Saitama Medical University International Medical Center
| | - Kazuto Kozaka
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences
| | - Satoshi Goshima
- Department of Diagnostic Radiology and Nuclear Medicine, Hamamatsu University School of Medicine.,Department of Radiology, Gifu University
| | - Tomoaki Ichikawa
- Department of Diagnostic Radiology, Saitama Medical University International Medical Center
| |
Collapse
|