1
|
Halle MK, Hodneland E, Wagner-Larsen KS, Lura NG, Fasmer KE, Berg HF, Stokowy T, Srivastava A, Forsse D, Hoivik EA, Woie K, Bertelsen BI, Krakstad C, Haldorsen IS. Radiomic profiles improve prognostication and reveal targets for therapy in cervical cancer. Sci Rep 2024; 14:11339. [PMID: 38760387 PMCID: PMC11101482 DOI: 10.1038/s41598-024-61271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
Cervical cancer (CC) is a major global health problem with 570,000 new cases and 266,000 deaths annually. Prognosis is poor for advanced stage disease, and few effective treatments exist. Preoperative diagnostic imaging is common in high-income countries and MRI measured tumor size routinely guides treatment allocation of cervical cancer patients. Recently, the role of MRI radiomics has been recognized. However, its potential to independently predict survival and treatment response requires further clarification. This retrospective cohort study demonstrates how non-invasive, preoperative, MRI radiomic profiling may improve prognostication and tailoring of treatments and follow-ups for cervical cancer patients. By unsupervised clustering based on 293 radiomic features from 132 patients, we identify three distinct clusters comprising patients with significantly different risk profiles, also when adjusting for FIGO stage and age. By linking their radiomic profiles to genomic alterations, we identify putative treatment targets for the different patient clusters (e.g., immunotherapy, CDK4/6 and YAP-TEAD inhibitors and p53 pathway targeting treatments).
Collapse
Affiliation(s)
- Mari Kyllesø Halle
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Erlend Hodneland
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Kari S Wagner-Larsen
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Section of Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Njål G Lura
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Section of Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kristine E Fasmer
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Section of Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hege F Berg
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Tomasz Stokowy
- Genomics Core Facility, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Aashish Srivastava
- Genomics Core Facility, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, Bergen, Norway
| | - David Forsse
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Erling A Hoivik
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Kathrine Woie
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Bjørn I Bertelsen
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Camilla Krakstad
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway.
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway.
| | - Ingfrid S Haldorsen
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway.
- Section of Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
2
|
Rahimi M, Akbari A, Asadi F, Emami H. Cervical cancer survival prediction by machine learning algorithms: a systematic review. BMC Cancer 2023; 23:341. [PMID: 37055741 PMCID: PMC10103471 DOI: 10.1186/s12885-023-10808-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Cervical cancer is a common malignant tumor of the female reproductive system and is considered a leading cause of mortality in women worldwide. The analysis of time to event, which is crucial for any clinical research, can be well done with the method of survival prediction. This study aims to systematically investigate the use of machine learning to predict survival in patients with cervical cancer. METHOD An electronic search of the PubMed, Scopus, and Web of Science databases was performed on October 1, 2022. All articles extracted from the databases were collected in an Excel file and duplicate articles were removed. The articles were screened twice based on the title and the abstract and checked again with the inclusion and exclusion criteria. The main inclusion criterion was machine learning algorithms for predicting cervical cancer survival. The information extracted from the articles included authors, publication year, dataset details, survival type, evaluation criteria, machine learning models, and the algorithm execution method. RESULTS A total of 13 articles were included in this study, most of which were published from 2018 onwards. The most common machine learning models were random forest (6 articles, 46%), logistic regression (4 articles, 30%), support vector machines (3 articles, 23%), ensemble and hybrid learning (3 articles, 23%), and Deep Learning (3 articles, 23%). The number of sample datasets in the study varied between 85 and 14946 patients, and the models were internally validated except for two articles. The area under the curve (AUC) range for overall survival (0.40 to 0.99), disease-free survival (0.56 to 0.88), and progression-free survival (0.67 to 0.81), respectively from (lowest to highest) received. Finally, 15 variables with an effective role in predicting cervical cancer survival were identified. CONCLUSION Combining heterogeneous multidimensional data with machine learning techniques can play a very influential role in predicting cervical cancer survival. Despite the benefits of machine learning, the problem of interpretability, explainability, and imbalanced datasets is still one of the biggest challenges. Providing machine learning algorithms for survival prediction as a standard requires further studies.
Collapse
Affiliation(s)
- Milad Rahimi
- Department of Health Information Technology and Management, Medical Informatics, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Akbari
- Obstetrics and Gynecology, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Asadi
- Department of Health Information Technology and Management, Health Information Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hassan Emami
- Department of Health Information Technology and Management, Information Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Sheehy J, Rutledge H, Acharya UR, Loh HW, Gururajan R, Tao X, Zhou X, Li Y, Gurney T, Kondalsamy-Chennakesavan S. Gynecological cancer prognosis using machine learning techniques: A systematic review of last three decades (1990–2022). Artif Intell Med 2023; 139:102536. [PMID: 37100507 DOI: 10.1016/j.artmed.2023.102536] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
OBJECTIVE Many Computer Aided Prognostic (CAP) systems based on machine learning techniques have been proposed in the field of oncology. The objective of this systematic review was to assess and critically appraise the methodologies and approaches used in predicting the prognosis of gynecological cancers using CAPs. METHODS Electronic databases were used to systematically search for studies utilizing machine learning methods in gynecological cancers. Study risk of bias (ROB) and applicability were assessed using the PROBAST tool. 139 studies met the inclusion criteria, of which 71 predicted outcomes for ovarian cancer patients, 41 predicted outcomes for cervical cancer patients, 28 predicted outcomes for uterine cancer patients, and 2 predicted outcomes for gynecological malignancies broadly. RESULTS Random forest (22.30 %) and support vector machine (21.58 %) classifiers were used most commonly. Use of clinicopathological, genomic and radiomic data as predictors was observed in 48.20 %, 51.08 % and 17.27 % of studies, respectively, with some studies using multiple modalities. 21.58 % of studies were externally validated. Twenty-three individual studies compared ML and non-ML methods. Study quality was highly variable and methodologies, statistical reporting and outcome measures were inconsistent, preventing generalized commentary or meta-analysis of performance outcomes. CONCLUSION There is significant variability in model development when prognosticating gynecological malignancies with respect to variable selection, machine learning (ML) methods and endpoint selection. This heterogeneity prevents meta-analysis and conclusions regarding the superiority of ML methods. Furthermore, PROBAST-mediated ROB and applicability analysis demonstrates concern for the translatability of existing models. This review identifies ways that this can be improved upon in future works to develop robust, clinically translatable models within this promising field.
Collapse
|
4
|
Takada A, Yokota H, Nemoto MW, Horikoshi T, Matsumoto K, Habu Y, Usui H, Nasu K, Shozu M, Uno T. Prognosis prediction of uterine cervical cancer using changes in the histogram and texture features of apparent diffusion coefficient during definitive chemoradiotherapy. PLoS One 2023; 18:e0282710. [PMID: 37000854 PMCID: PMC10065283 DOI: 10.1371/journal.pone.0282710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 02/21/2023] [Indexed: 04/03/2023] Open
Abstract
OBJECTIVES We investigated prospectively whether, in cervical cancer (CC) treated with concurrent chemoradiotherapy (CCRT), the Apparent diffusion coefficient (ADC) histogram and texture parameters and their change rates during treatment could predict prognosis. METHODS Fifty-seven CC patients treated with CCRT at our institution were included. They underwent MRI scans up to four times during the treatment course (1st, before treatment [n = 41], 2nd, at the start of image-guided brachytherapy (IGBT) [n = 41], 3rd, in the middle of IGBT [n = 27], 4th, after treatment [n = 53]). The entire tumor was manually set as the volume of interest (VOI) manually in the axial images of the ADC map by two radiologists. A total of 107 image features (morphology features 14, histogram features 18, texture features 75) were extracted from the VOI. The recurrence prediction values of the features and their change rates were evaluated by Receiver operating characteristics (ROC) analysis. The presence or absence of local and distant recurrence within two years was set as an outcome. The intraclass correlation coefficient (ICC) was also calculated. RESULTS The change rates in kurtosis between the 1st and 3rd, and 1st and 2nd MRIs, and the change rate in grey level co-occurrence matrix_cluster shade between the 2nd and 3rd MRIs showed particularly high predictive powers (area under the ROC curve = 0.785, 0.759, and 0.750, respectively), which exceeded the predictive abilities of the parameters obtained from pre- or post-treatment MRI only. The change rate in kurtosis between the 1st and 2nd MRIs had good reliability (ICC = 0.765). CONCLUSIONS The change rate in ADC kurtosis between the 1st and 2nd MRIs was the most reliable parameter, enabling us to predict prognosis early in the treatment course.
Collapse
Affiliation(s)
- Akiyo Takada
- Department of Radiology, Chiba University Hospital, Chiba, Japan
- * E-mail:
| | - Hajime Yokota
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Miho Watanabe Nemoto
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takuro Horikoshi
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Koji Matsumoto
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Yuji Habu
- Department of Reproductive Medicine, Obstetrics and Gynecology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hirokazu Usui
- Department of Reproductive Medicine, Obstetrics and Gynecology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsuhiro Nasu
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Makio Shozu
- Department of Reproductive Medicine, Obstetrics and Gynecology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takashi Uno
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
5
|
Wei G, Jiang P, Tang Z, Qu A, Deng X, Guo F, Sun H, Zhang Y, Gu L, Zhang S, Mu W, Wang J, Tian J. MRI radiomics in overall survival prediction of local advanced cervical cancer patients tread by adjuvant chemotherapy following concurrent chemoradiotherapy or concurrent chemoradiotherapy alone. Magn Reson Imaging 2022; 91:81-90. [DOI: 10.1016/j.mri.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 01/16/2023]
|
6
|
Ikushima H, Haga A, Ando K, Kato S, Kaneyasu Y, Uno T, Okonogi N, Yoshida K, Ariga T, Isohashi F, Harima Y, Kanemoto A, Ii N, Wakatsuki M, Ohno T. Prediction of out-of-field recurrence after chemoradiotherapy for cervical cancer using a combination model of clinical parameters and magnetic resonance imaging radiomics: a multi-institutional study of the Japanese Radiation Oncology Study Group. JOURNAL OF RADIATION RESEARCH 2022; 63:98-106. [PMID: 34865079 PMCID: PMC8776693 DOI: 10.1093/jrr/rrab104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/13/2021] [Indexed: 06/13/2023]
Abstract
We retrospectively assessed whether magnetic resonance imaging (MRI) radiomics combined with clinical parameters can improve the predictability of out-of-field recurrence (OFR) of cervical cancer after chemoradiotherapy. The data set was collected from 204 patients with stage IIB (FIGO: International Federation of Gynecology and Obstetrics 2008) cervical cancer who underwent chemoradiotherapy at 14 Japanese institutes. Of these, 180 patients were finally included for analysis. OFR-free survival was calculated using the Kaplan-Meier method, and the statistical significance of clinicopathological parameters for the OFR-free survival was evaluated using the log-rank test and Cox proportional-hazards model. Prediction of OFR from the analysis of diffusion-weighted images (DWI) and T2-weighted images of pretreatment MRI was done using the least absolute shrinkage and selection operator (LASSO) model for engineering image feature extraction. The accuracy of prediction was evaluated by 5-fold cross-validation of the receiver operating characteristic (ROC) analysis. Para-aortic lymph node metastasis (p = 0.003) was a significant prognostic factor in univariate and multivariate analyses. ROC analysis showed an area under the curve (AUC) of 0.709 in predicting OFR using the pretreatment status of para-aortic lymph node metastasis, 0.667 using the LASSO model for DWIs and 0.602 using T2 weighted images. The AUC improved to 0.734 upon combining the pretreatment status of para-aortic lymph node metastasis with that from the LASSO model for DWIs. Combining MRI radiomics with clinical parameters improved the accuracy of predicting OFR after chemoradiotherapy for locally advanced cervical cancer.
Collapse
Affiliation(s)
- Hitoshi Ikushima
- Corresponding author. Department of Therapeutic Radiology, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima 7708503, Japan, Telephone: +81 88 633 9051; Fax: +81 88 633 9051, E-mail address:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Akazawa M, Hashimoto K. Artificial intelligence in gynecologic cancers: Current status and future challenges - A systematic review. Artif Intell Med 2021; 120:102164. [PMID: 34629152 DOI: 10.1016/j.artmed.2021.102164] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/28/2021] [Accepted: 08/31/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Over the past years, the application of artificial intelligence (AI) in medicine has increased rapidly, especially in diagnostics, and in the near future, the role of AI in medicine will become progressively more important. In this study, we elucidated the state of AI research on gynecologic cancers. METHODS A search was conducted in three databases-PubMed, Web of Science, and Scopus-for research papers dated between January 2010 and December 2020. As keywords, we used "artificial intelligence," "deep learning," "machine learning," and "neural network," combined with "cervical cancer," "endometrial cancer," "uterine cancer," and "ovarian cancer." We excluded genomic and molecular research, as well as automated pap-smear diagnoses and digital colposcopy. RESULTS Of 1632 articles, 71 were eligible, including 34 on cervical cancer, 13 on endometrial cancer, three on uterine sarcoma, and 21 on ovarian cancer. A total of 35 studies (49%) used imaging data and 36 studies (51%) used value-based data as the input data. Magnetic resonance imaging (MRI), computed tomography (CT), ultrasound, cytology, and hysteroscopy data were used as imaging data, and the patients' backgrounds, blood examinations, tumor markers, and indices in pathological examination were used as value-based data. The targets of prediction were definitive diagnosis and prognostic outcome, including overall survival and lymph node metastasis. The size of the dataset was relatively small because 64 studies (90%) included less than 1000 cases, and the median size was 214 cases. The models were evaluated by accuracy scores, area under the receiver operating curve (AUC), and sensitivity/specificity. Owing to the heterogeneity, a quantitative synthesis was not appropriate in this review. CONCLUSIONS In gynecologic oncology, more studies have been conducted on cervical cancer than on ovarian and endometrial cancers. Prognoses were mainly used in the study of cervical cancer, whereas diagnoses were primarily used for studying ovarian cancer. The proficiency of the study design for endometrial cancer and uterine sarcoma was unclear because of the small number of studies conducted. The small size of the dataset and the lack of a dataset for external validation were indicated as the challenges of the studies.
Collapse
Affiliation(s)
- Munetoshi Akazawa
- Department of Obstetrics and Gynecology, Tokyo Women's Medical University Medical Center East, Tokyo, Japan.
| | - Kazunori Hashimoto
- Department of Obstetrics and Gynecology, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| |
Collapse
|
8
|
Manganaro L, Nicolino GM, Dolciami M, Martorana F, Stathis A, Colombo I, Rizzo S. Radiomics in cervical and endometrial cancer. Br J Radiol 2021; 94:20201314. [PMID: 34233456 PMCID: PMC9327743 DOI: 10.1259/bjr.20201314] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Radiomics is an emerging field of research that aims to find associations between quantitative information extracted from imaging examinations and clinical data to support the best clinical decision. In the last few years, some papers have been evaluating the role of radiomics in gynecological malignancies, mainly focusing on ovarian cancer. Nonetheless, cervical cancer is the most frequent gynecological malignancy in developing countries and endometrial cancer is the most common in western countries. The purpose of this narrative review is to give an overview of the latest published papers evaluating the role of radiomics in cervical and endometrial cancer, mostly evaluating association with tumor prognostic factors, with response to therapy and with prediction of recurrence and distant metastasis.
Collapse
Affiliation(s)
- Lucia Manganaro
- Department of Radiological, Oncological and Pathological Sciences; University of Rome Sapienza (IT), Rome, Italy
| | - Gabriele Maria Nicolino
- Post-graduate School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono 7, Milan, Italy
| | - Miriam Dolciami
- Department of Radiological, Oncological and Pathological Sciences; University of Rome Sapienza (IT), Rome, Italy
| | - Federica Martorana
- Oncology Institute of Southern Switzerland, San Giovanni Hospital, 6500 Bellinzona, (CH), Switzerland
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, San Giovanni Hospital, 6500 Bellinzona, (CH), Switzerland.,Facoltà di Scienze biomediche, Università della Svizzera italiana (USI), Via Buffi 13, 6900, Lugano (CH), Switzerland
| | - Ilaria Colombo
- Oncology Institute of Southern Switzerland, San Giovanni Hospital, 6500 Bellinzona, (CH), Switzerland
| | - Stefania Rizzo
- Facoltà di Scienze biomediche, Università della Svizzera italiana (USI), Via Buffi 13, 6900, Lugano (CH), Switzerland.,Istituto di Imaging della Svizzera Italiana (IIMSI), Ente Ospedaliero Cantonale, Via Tesserete 46, Lugano (CH), Switzerland
| |
Collapse
|
9
|
Hoshino I, Yokota H. Radiogenomics of gastroenterological cancer: The dawn of personalized medicine with artificial intelligence-based image analysis. Ann Gastroenterol Surg 2021; 5:427-435. [PMID: 34337291 PMCID: PMC8316732 DOI: 10.1002/ags3.12437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/29/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Radiogenomics is a new field of medical science that integrates two omics, radiomics and genomics, and may bring a major paradigm shift in traditional personalized medicine strategies that require tumor tissue samples. In addition, the acquisition of the data does not require special imaging equipment or special imaging conditions, and it is possible to use image information from computed tomography, magnetic resonance imaging, positron emission tomography-computed tomography in clinical practice, so the versatility and cost-effectiveness of radiogenomics are expected. So far, the field of radiogenomics has developed, especially in the fields of brain tumors and breast cancer, but recently, reports of radiogenomic research on gastroenterological cancer are increasing. This review provides an overview of radiogenomic research methods and summarizes the current radiogenomic research in gastroenterological cancer. In addition, the application of artificial intelligence is considered to be indispensable for the integrated analysis of enormous omics information in the future, and the future direction of this research, including the latest technologies, will be discussed.
Collapse
Affiliation(s)
- Isamu Hoshino
- Division of Gastroenterological SurgeryChiba Cancer CenterChibaJapan
| | - Hajime Yokota
- Department of Diagnostic Radiology and Radiation OncologyGraduate School of MedicineChiba UniversityChibaJapan
| |
Collapse
|
10
|
Caruso D, Polici M, Zerunian M, Pucciarelli F, Guido G, Polidori T, Landolfi F, Nicolai M, Lucertini E, Tarallo M, Bracci B, Nacci I, Rucci C, Eid M, Iannicelli E, Laghi A. Radiomics in Oncology, Part 2: Thoracic, Genito-Urinary, Breast, Neurological, Hematologic and Musculoskeletal Applications. Cancers (Basel) 2021; 13:cancers13112681. [PMID: 34072366 PMCID: PMC8197789 DOI: 10.3390/cancers13112681] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary This Part II is an overview of the main applications of Radiomics in oncologic imaging with a focus on diagnosis, prognosis prediction and assessment of response to therapy in thoracic, genito-urinary, breast, neurologic, hematologic and musculoskeletal oncology. In this part II we describe the radiomic applications, limitations and future perspectives for each pre-eminent tumor. In the future, Radiomics could have a pivotal role in management of cancer patients as an imaging tool to support clinicians in decision making process. However, further investigations need to obtain some stable results and to standardize radiomic analysis (i.e., image acquisitions, segmentation and model building) in clinical routine. Abstract Radiomics has the potential to play a pivotal role in oncological translational imaging, particularly in cancer detection, prognosis prediction and response to therapy evaluation. To date, several studies established Radiomics as a useful tool in oncologic imaging, able to support clinicians in practicing evidence-based medicine, uniquely tailored to each patient and tumor. Mineable data, extracted from medical images could be combined with clinical and survival parameters to develop models useful for the clinicians in cancer patients’ assessment. As such, adding Radiomics to traditional subjective imaging may provide a quantitative and extensive cancer evaluation reflecting histologic architecture. In this Part II, we present an overview of radiomic applications in thoracic, genito-urinary, breast, neurological, hematologic and musculoskeletal oncologic applications.
Collapse
Affiliation(s)
- Damiano Caruso
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Michela Polici
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Marta Zerunian
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Francesco Pucciarelli
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Gisella Guido
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Tiziano Polidori
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Federica Landolfi
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Matteo Nicolai
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Elena Lucertini
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Mariarita Tarallo
- Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, 00161 Rome, Italy;
| | - Benedetta Bracci
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Ilaria Nacci
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Carlotta Rucci
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Marwen Eid
- Internal Medicine, Northwell Health Staten Island University Hospital, Staten Island, New York, NY 10305, USA;
| | - Elsa Iannicelli
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Andrea Laghi
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
- Correspondence: ; Tel.: +39-0633775285
| |
Collapse
|
11
|
Wang X, Chen K, Wang W, Li Q, Liu K, Li Q, Cui X, Tu W, Sun H, Xu S, Zhang R, Xiao Y, Fan L, Liu S. Can peritumoral regions increase the efficiency of machine-learning prediction of pathological invasiveness in lung adenocarcinoma manifesting as ground-glass nodules? J Thorac Dis 2021; 13:1327-1337. [PMID: 33841926 PMCID: PMC8024795 DOI: 10.21037/jtd-20-2981] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/18/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND The peri-tumor microenvironment plays an important role in the occurrence, growth and metastasis of cancer. The aim of this study is to explore the value and application of a CT image-based deep learning model of tumors and peri-tumors in predicting the invasiveness of ground-glass nodules (GGNs). METHODS Preoperative thin-section chest CT images were reviewed retrospectively in 622 patients with a total of 687 pulmonary GGNs. GGNs are classified according to clinical management strategies as invasive lesions (IAC) and non-invasive lesions (AAH, AIS and MIA). The two volumes of interest (VOIs) identified on CT were the gross tumor volume (GTV) and the gross volume of tumor incorporating peritumoral region (GPTV). Three dimensional (3D) DenseNet was used to model and predict GGN invasiveness, and five-fold cross validation was performed. We used GTV and GPTV as inputs for the comparison model. Prediction performance was evaluated by sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). RESULTS The GTV-based model was able to successfully predict GGN invasiveness, with an AUC of 0.921 (95% CI, 0.896-0.937). Using GPTV, the AUC of the model increased to 0.955 (95% CI, 0.939-0.971). CONCLUSIONS The deep learning method performed well in predicting GGN invasiveness. The predictive ability of the GPTV-based model was more effective than that of the GTV-based model.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Kaili Chen
- Department of Hematology, The Myeloma & Lymphoma Center, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wei Wang
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, China
- 71282 Hospital, Baoding, China
| | - Qingchu Li
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Kai Liu
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qianyun Li
- Department of Radiology, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Xing Cui
- Beijing Infervision Technology Co. Ltd., Beijing, China
| | - Wenting Tu
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hongbiao Sun
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shaochun Xu
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Rongguo Zhang
- Beijing Infervision Technology Co. Ltd., Beijing, China
| | - Yi Xiao
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Li Fan
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shiyuan Liu
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
12
|
Zhou Z, Maquilan GM, Thomas K, Wachsmann J, Wang J, Folkert MR, Albuquerque K. Quantitative PET Imaging and Clinical Parameters as Predictive Factors for Patients With Cervical Carcinoma: Implications of a Prediction Model Generated Using Multi-Objective Support Vector Machine Learning. Technol Cancer Res Treat 2020; 19:1533033820983804. [PMID: 33357081 PMCID: PMC7768874 DOI: 10.1177/1533033820983804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Purpose: Quantitative features from pre-treatment positron emission tomography (PET) have been used to predict treatment outcomes for patients with cervical carcinoma. The purpose of this study is to use quantitative PET imaging features and clinical parameters to construct a multi-objective machine learning predictive model. Materials/Methods: Seventy-five patients with stage IB2-IVA disease treated at our institution from 2009–2012 were analyzed. Models predicting locoregional and distant failure were generated using clinical parameters (age, race, stage, histology, tumor size, nodal status) and imaging features (12 textural, 9 intensity, 8 geometric features, 2 additional imaging features) from pre-treatment PET. Model features were selected based on a multi-objective evolutionary algorithm to maximize specificity given a fixed moderately high sensitivity using support vector machine learning methods. Model 1 used clinical parameters only (C), Model 2 used imaging features only (I), and Model 3 used clinical and imaging features (C+I). Sensitivity, specificity, area under a receiver-operating characteristic curve (AUC), and p-values were compared to assess ability to predict locoregional and distant failure. Results: C+I had the highest performance for both locoregional failure (AUC 0.84, p < 0.01; specificity: 0.86; sensitivity: 0.79) and distant failure (AUC 0.75, p < 0.01; specificity: 0.75; sensitivity: 0.75). Conclusions: Based on a moderately high fixed sensitivity and optimized for specificity, the model using both clinical parameters and imaging features (C+I) had the best performance in predicting both locoregional failure and distant failure.
Collapse
Affiliation(s)
- Zhiguo Zhou
- School of Computer Science and Mathematics, University of Central Missouri, MO, USA
| | - Genevieve M Maquilan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kimberly Thomas
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jason Wachsmann
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael R Folkert
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kevin Albuquerque
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
13
|
Schick U, Lucia F, Bourbonne V, Dissaux G, Pradier O, Jaouen V, Tixier F, Visvikis D, Hatt M. Use of radiomics in the radiation oncology setting: Where do we stand and what do we need? Cancer Radiother 2020; 24:755-761. [DOI: 10.1016/j.canrad.2020.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
|