1
|
Araújo CC, Frias J, Mendes F, Martins M, Mota J, Almeida MJ, Ribeiro T, Macedo G, Mascarenhas M. Unlocking the Potential of AI in EUS and ERCP: A Narrative Review for Pancreaticobiliary Disease. Cancers (Basel) 2025; 17:1132. [PMID: 40227709 PMCID: PMC11988021 DOI: 10.3390/cancers17071132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 04/15/2025] Open
Abstract
Artificial Intelligence (AI) is transforming pancreaticobiliary endoscopy by enhancing diagnostic accuracy, procedural efficiency, and clinical outcomes. This narrative review explores AI's applications in endoscopic ultrasound (EUS) and endoscopic retrograde cholangiopancreatography (ERCP), emphasizing its potential to address diagnostic and therapeutic challenges in pancreaticobiliary diseases. In EUS, AI improves pancreatic mass differentiation, malignancy prediction, and landmark recognition, demonstrating high diagnostic accuracy and outperforming traditional guidelines. In ERCP, AI facilitates precise biliary stricture identification, optimizes procedural techniques, and supports decision-making through real-time data integration, improving ampulla recognition and predicting cannulation difficulty. Additionally, predictive analytics help mitigate complications like post-ERCP pancreatitis. The future of AI in pancreaticobiliary endoscopy lies in multimodal data fusion, integrating imaging, genomic, and molecular data to enable personalized medicine. However, challenges such as data quality, external validation, clinician training, and ethical concerns-like data privacy and algorithmic bias-must be addressed to ensure safe implementation. By overcoming these challenges, AI has the potential to redefine pancreaticobiliary healthcare, improving diagnostic accuracy, therapeutic outcomes, and personalized care.
Collapse
Affiliation(s)
- Catarina Cardoso Araújo
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Joana Frias
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Francisco Mendes
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Miguel Martins
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Joana Mota
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Maria João Almeida
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Tiago Ribeiro
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Guilherme Macedo
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Miguel Mascarenhas
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| |
Collapse
|
2
|
Qi L, Li X, Ni J, Du Y, Gu Q, Liu B, He J, Du J. Construction of feature selection and efficacy prediction model for transformation therapy of locally advanced pancreatic cancer based on CT, 18F-FDG PET/CT, DNA mutation, and CA199. Cancer Cell Int 2025; 25:19. [PMID: 39828699 PMCID: PMC11743000 DOI: 10.1186/s12935-025-03639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Immunotherapy and radiotherapy play crucial roles in the transformation therapy of locally advanced pancreatic cancer; however, the exploration of effective predictive biomarkers has been unsatisfactory. With the rapid development of radiomics, next-generation sequencing, and machine learning, there is hope to identify biomarkers that can predict the efficacy of transformative treatment for locally advanced pancreatic cancer through simple and non-invasive clinical methods. Our study focuses on using computed tomography (CT), positron emission tomography/computed tomography (PET/CT), gene mutations, and baseline carbohydrate antigen 199 (CA199) to identify biomarkers for predicting the efficacy of transformative treatment. METHODS We retrospectively collected data from 70 patients with locally advanced pancreatic cancer who had undergone a biopsy for pathological diagnosis. These patients had complete baseline enhanced CT images and baseline CA199 results. Among them, 65 patients had efficacy evaluation results after 4 treatment cycles, 54 patients had complete baseline PET/CT images, 51 patients had complete DNA mutation detection results, and 34 patients had both complete PET/CT images and DNA mutation detection results. Additionally, 47 patients had complete available CT images at baseline, after 2 treatment cycles, and after 4 treatment cycles. We extracted radiomic features from the original lesion-enhanced CT images (including baseline and subsequent follow-up CT scans), radiomic features from baseline 18F-fluoro-2-deoxy-2-D-glucose (18F-FDG) PET, and patient-specific features related to abdominal and visceral fat. We used short-term and long-term treatment efficacy as the prediction outcomes and performed statistical and machine learning-based feature selection and COX regression analysis to identify potentially predictive features. Subsequently, we separately or in combination modeled the CT features, PET features, baseline CA199, and gene mutation data to construct efficacy prediction models. Finally, we investigated the mixed effects model of the dynamic changes in CT features at baseline, after 2 treatment cycles, and after 4 treatment cycles on the prediction of short-term treatment efficacy. RESULTS We found that a combination of CT radiomic features, including F1_ gray level co-occurrence matrix (GLCM), F2_gray level run length matrix (GLRLM), F5_neighboring gray tone difference matrix (NGTDM), and F6_Shape, PET radiomic features such as visceral adipose tissue (VAT), tumor-to-liver ratio (T/L), standardized uptake value mean (SUVmean), and GLCM, as well as baseline CA199, can be used to predict short-term treatment efficacy. Baseline CA199, GLCM, IntensityDirect, Shape, and PET/CT features are independent factors for long-term treatment efficacy. In constructing the short-term treatment efficacy prediction model, ensemble learning methods such as adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and RandomForest performed the best. However, in terms of model interpretability, decision tree methods provide the most intuitive display of the predictive details of the model. For the time series data of patients' baseline CT, CT after 2 treatment cycles, and CT after 4 treatment cycles, long short-term memory (LSTM) modeling yielded better predictive models. CONCLUSION A multimodal combination of radiomics, DNA mutations, and baseline CA199 can predict the efficacy of transformative treatment in locally advanced pancreatic cancer. Various feature selection methods and multimodal fusion approaches contribute to guiding personalized and precise treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Liang Qi
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xiang Li
- Department of PET-CT/MRI, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiayao Ni
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China
| | - Yali Du
- National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
| | - Qing Gu
- National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China.
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Juan Du
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China.
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
3
|
Fujioka T, Tsukada J, Hayashida T, Yamaga E, Tsukada H, Kubota K, Tateishi U. The Future of Breast Cancer Diagnosis in Japan with AI and Ultrasonography. JMA J 2025; 8:91-101. [PMID: 39926065 PMCID: PMC11799727 DOI: 10.31662/jmaj.2024-0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 07/31/2024] [Indexed: 02/11/2025] Open
Abstract
In Japan, mammography is commonly used for breast cancer screening. However, the mortality rate has not decreased, possibly due to the low screening uptake and the high prevalence of dense breast tissue among Japanese women, which reduces mammography's effectiveness. A recent prospective study in Japan, J-START, demonstrated that combining mammography with ultrasonography increases detection rates and reduces the incidence of interval cancers, highlighting the significance of ultrasound examinations. Artificial Intelligence (AI) technologies, particularly in machine learning and deep learning, offer promising solutions to enhance the accuracy and efficiency of breast ultrasound diagnostics. This review explores AI's current capabilities in breast ultrasound imaging, emphasizing key advancements in breast lesion detection and diagnosis. Additionally, we introduce AI-based breast ultrasound diagnostic support programs approved by the Pharmaceuticals and Medical Devices Agency, which include programs for detecting lesion candidate regions and diagnosing the necessity of further examination based on detected lesion candidates. These AI tools are expected to improve diagnostic accuracy and efficiency. While AI holds significant promise, several challenges remain. It is essential for physicians to oversee its use responsibly, as there are concerns regarding patient acceptance and environmental impact. This review underscores the revolutionary potential of AI in breast cancer diagnostics and emphasizes the importance of ongoing research and development to overcome existing limitations.
Collapse
Affiliation(s)
- Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jitsuro Tsukada
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Tetsu Hayashida
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Emi Yamaga
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroko Tsukada
- Department of Breast Surgery, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Kazunori Kubota
- Department of Radiology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Ukihide Tateishi
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
4
|
Letchumanan N, Hanaoka S, Takenaga T, Suzuki Y, Nakao T, Nomura Y, Yoshikawa T, Abe O. Predicting the risk of type 2 diabetes mellitus (T2DM) emergence in 5 years using mammography images: a comparison study between radiomics and deep learning algorithm. J Med Imaging (Bellingham) 2025; 12:014501. [PMID: 39776665 PMCID: PMC11702674 DOI: 10.1117/1.jmi.12.1.014501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025] Open
Abstract
Purpose The prevalence of type 2 diabetes mellitus (T2DM) has been steadily increasing over the years. We aim to predict the occurrence of T2DM using mammography images within 5 years using two different methods and compare their performance. Approach We examined 312 samples, including 110 positive cases (developed T2DM after 5 years) and 202 negative cases (did not develop T2DM) using two different methods. In the first method, a radiomics-based approach, we utilized radiomics features and machine learning (ML) algorithms. The entire breast region was chosen as the region of interest for extracting radiomics features. Then, a binary breast image was created from which we extracted 668 features and analyzed them using various ML algorithms. In the second method, a complex convolutional neural network (CNN) with a modified ResNet architecture and various kernel sizes was applied to raw mammography images for the prediction task. A nested, stratified five-fold cross-validation was done for both parts A and B to compute accuracy, sensitivity, specificity, and area under the receiver operating curve (AUROC). Hyperparameter tuning was also done to enhance the model's performance and reliability. Results The radiomics approach's light gradient boosting model gave 68.9% accuracy, 30.7% sensitivity, 89.5% specificity, and 0.63 AUROC. The CNN method achieved an AUROC of 0.58 over 20 epochs. Conclusion Radiomics outperformed CNN by 0.05 in terms of AUROC. This may be due to the more straightforward interpretability and clinical relevance of predefined radiomics features compared with the complex, abstract features learned by CNNs.
Collapse
Affiliation(s)
- Nishta Letchumanan
- The University of Tokyo, Department of Radiology, Graduate School of Medicine, Tokyo, Japan
| | - Shouhei Hanaoka
- The University of Tokyo Hospital, Department of Radiology, Tokyo, Japan
| | - Tomomi Takenaga
- The University of Tokyo Hospital, Department of Radiology, Tokyo, Japan
| | - Yusuke Suzuki
- The University of Tokyo Hospital, Department of Breast and Endocrine Surgery, Tokyo, Japan
| | - Takahiro Nakao
- The University of Tokyo Hospital, Department of Computational Diagnostic Radiology and Preventive Medicine, Tokyo, Japan
| | - Yukihiro Nomura
- The University of Tokyo Hospital, Department of Computational Diagnostic Radiology and Preventive Medicine, Tokyo, Japan
- Chiba University, Center for Frontier Medical Engineering, Chiba, Japan
| | - Takeharu Yoshikawa
- The University of Tokyo Hospital, Department of Computational Diagnostic Radiology and Preventive Medicine, Tokyo, Japan
| | - Osamu Abe
- The University of Tokyo Hospital, Department of Radiology, Tokyo, Japan
| |
Collapse
|
5
|
Antony A, Mukherjee S, Bi Y, Collisson EA, Nagaraj M, Murlidhar M, Wallace MB, Goenka AH. AI-Driven insights in pancreatic cancer imaging: from pre-diagnostic detection to prognostication. Abdom Radiol (NY) 2024:10.1007/s00261-024-04775-x. [PMID: 39738571 DOI: 10.1007/s00261-024-04775-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related deaths in the United States, largely due to its poor five-year survival rate and frequent late-stage diagnosis. A significant barrier to early detection even in high-risk cohorts is that the pancreas often appears morphologically normal during the pre-diagnostic phase. Yet, the disease can progress rapidly from subclinical stages to widespread metastasis, undermining the effectiveness of screening. Recently, artificial intelligence (AI) applied to cross-sectional imaging has shown significant potential in identifying subtle, early-stage changes in pancreatic tissue that are often imperceptible to the human eye. Moreover, AI-driven imaging also aids in the discovery of prognostic and predictive biomarkers, essential for personalized treatment planning. This article uniquely integrates a critical discussion on AI's role in detecting visually occult PDAC on pre-diagnostic imaging, addresses challenges of model generalizability, and emphasizes solutions like standardized datasets and clinical workflows. By focusing on both technical advancements and practical implementation, this article provides a forward-thinking conceptual framework that bridges current gaps in AI-driven PDAC research.
Collapse
Affiliation(s)
- Ajith Antony
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Yan Bi
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - Eric A Collisson
- Department of Medical Oncology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Madhu Nagaraj
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Michael B Wallace
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - Ajit H Goenka
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Ueda D, Walston SL, Fujita S, Fushimi Y, Tsuboyama T, Kamagata K, Yamada A, Yanagawa M, Ito R, Fujima N, Kawamura M, Nakaura T, Matsui Y, Tatsugami F, Fujioka T, Nozaki T, Hirata K, Naganawa S. Climate change and artificial intelligence in healthcare: Review and recommendations towards a sustainable future. Diagn Interv Imaging 2024; 105:453-459. [PMID: 38918123 DOI: 10.1016/j.diii.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
The rapid advancement of artificial intelligence (AI) in healthcare has revolutionized the industry, offering significant improvements in diagnostic accuracy, efficiency, and patient outcomes. However, the increasing adoption of AI systems also raises concerns about their environmental impact, particularly in the context of climate change. This review explores the intersection of climate change and AI in healthcare, examining the challenges posed by the energy consumption and carbon footprint of AI systems, as well as the potential solutions to mitigate their environmental impact. The review highlights the energy-intensive nature of AI model training and deployment, the contribution of data centers to greenhouse gas emissions, and the generation of electronic waste. To address these challenges, the development of energy-efficient AI models, the adoption of green computing practices, and the integration of renewable energy sources are discussed as potential solutions. The review also emphasizes the role of AI in optimizing healthcare workflows, reducing resource waste, and facilitating sustainable practices such as telemedicine. Furthermore, the importance of policy and governance frameworks, global initiatives, and collaborative efforts in promoting sustainable AI practices in healthcare is explored. The review concludes by outlining best practices for sustainable AI deployment, including eco-design, lifecycle assessment, responsible data management, and continuous monitoring and improvement. As the healthcare industry continues to embrace AI technologies, prioritizing sustainability and environmental responsibility is crucial to ensure that the benefits of AI are realized while actively contributing to the preservation of our planet.
Collapse
Affiliation(s)
- Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Abeno-ku, Osaka 545-8585, Japan; Department of Artificial Intelligence, Graduate School of Medicine, Osaka Metropolitan University, Abeno-ku, Osaka 545-8585, Japan.
| | - Shannon L Walston
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Abeno-ku, Osaka 545-8585, Japan
| | - Shohei Fujita
- Department of Radiology, University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto 606-8507, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akira Yamada
- Medical Data Science Course, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Graduate School of Medicine, Osaka University, Suita-city, Osaka 565-0871, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido 060-8648, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama 700-8558, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, Minami-ku, Hiroshima City, Hiroshima 734-8551, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
7
|
Teoh JR, Dong J, Zuo X, Lai KW, Hasikin K, Wu X. Advancing healthcare through multimodal data fusion: a comprehensive review of techniques and applications. PeerJ Comput Sci 2024; 10:e2298. [PMID: 39650483 PMCID: PMC11623190 DOI: 10.7717/peerj-cs.2298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/09/2024] [Indexed: 12/11/2024]
Abstract
With the increasing availability of diverse healthcare data sources, such as medical images and electronic health records, there is a growing need to effectively integrate and fuse this multimodal data for comprehensive analysis and decision-making. However, despite its potential, multimodal data fusion in healthcare remains limited. This review paper provides an overview of existing literature on multimodal data fusion in healthcare, covering 69 relevant works published between 2018 and 2024. It focuses on methodologies that integrate different data types to enhance medical analysis, including techniques for integrating medical images with structured and unstructured data, combining multiple image modalities, and other features. Additionally, the paper reviews various approaches to multimodal data fusion, such as early, intermediate, and late fusion methods, and examines the challenges and limitations associated with these techniques. The potential benefits and applications of multimodal data fusion in various diseases are highlighted, illustrating specific strategies employed in healthcare artificial intelligence (AI) model development. This research synthesizes existing information to facilitate progress in using multimodal data for improved medical diagnosis and treatment planning.
Collapse
Affiliation(s)
- Jing Ru Teoh
- Department of Biomedical Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Jian Dong
- China Electronics Standardization Institute, Beijing, China
| | - Xiaowei Zuo
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Khin Wee Lai
- Department of Biomedical Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Khairunnisa Hasikin
- Department of Biomedical Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Faculty of Engineering, Centre of Intelligent Systems for Emerging Technology (CISET), Kuala Lumpur, Malaysia
| | - Xiang Wu
- Department of Biomedical Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Medical Information Security, Xuzhou, Jiangsu, China
| |
Collapse
|
8
|
Akmeşe ÖF. Data privacy-aware machine learning approach in pancreatic cancer diagnosis. BMC Med Inform Decis Mak 2024; 24:248. [PMID: 39237927 PMCID: PMC11375871 DOI: 10.1186/s12911-024-02657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
PROBLEM Pancreatic ductal adenocarcinoma (PDAC) is considered a highly lethal cancer due to its advanced stage diagnosis. The five-year survival rate after diagnosis is less than 10%. However, if diagnosed early, the five-year survival rate can reach up to 70%. Early diagnosis of PDAC can aid treatment and improve survival rates by taking necessary precautions. The challenge is to develop a reliable, data privacy-aware machine learning approach that can accurately diagnose pancreatic cancer with biomarkers. AIM The study aims to diagnose a patient's pancreatic cancer while ensuring the confidentiality of patient records. In addition, the study aims to guide researchers and clinicians in developing innovative methods for diagnosing pancreatic cancer. METHODS Machine learning, a branch of artificial intelligence, can identify patterns by analyzing large datasets. The study pre-processed a dataset containing urine biomarkers with operations such as filling in missing values, cleaning outliers, and feature selection. The data was encrypted using the Fernet encryption algorithm to ensure confidentiality. Ten separate machine learning models were applied to predict individuals with PDAC. Performance metrics such as F1 score, recall, precision, and accuracy were used in the modeling process. RESULTS Among the 590 clinical records analyzed, 199 (33.7%) belonged to patients with pancreatic cancer, 208 (35.3%) to patients with non-cancerous pancreatic disorders (such as benign hepatobiliary disease), and 183 (31%) to healthy individuals. The LGBM algorithm showed the highest efficiency by achieving an accuracy of 98.8%. The accuracy of the other algorithms ranged from 98 to 86%. In order to understand which features are more critical and which data the model is based on, the analysis found that the features "plasma_CA19_9", REG1A, TFF1, and LYVE1 have high importance levels. The LIME analysis also analyzed which features of the model are important in the decision-making process. CONCLUSIONS This research outlines a data privacy-aware machine learning tool for predicting PDAC. The results show that a promising approach can be presented for clinical application. Future research should expand the dataset and focus on validation by applying it to various populations.
Collapse
Affiliation(s)
- Ömer Faruk Akmeşe
- Department of Computer Engineering, Hitit University Çorum, Çorum, 19030, Türkiye.
| |
Collapse
|
9
|
Liu W, Zhang B, Liu T, Jiang J, Liu Y. Artificial Intelligence in Pancreatic Image Analysis: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:4749. [PMID: 39066145 PMCID: PMC11280964 DOI: 10.3390/s24144749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Pancreatic cancer is a highly lethal disease with a poor prognosis. Its early diagnosis and accurate treatment mainly rely on medical imaging, so accurate medical image analysis is especially vital for pancreatic cancer patients. However, medical image analysis of pancreatic cancer is facing challenges due to ambiguous symptoms, high misdiagnosis rates, and significant financial costs. Artificial intelligence (AI) offers a promising solution by relieving medical personnel's workload, improving clinical decision-making, and reducing patient costs. This study focuses on AI applications such as segmentation, classification, object detection, and prognosis prediction across five types of medical imaging: CT, MRI, EUS, PET, and pathological images, as well as integrating these imaging modalities to boost diagnostic accuracy and treatment efficiency. In addition, this study discusses current hot topics and future directions aimed at overcoming the challenges in AI-enabled automated pancreatic cancer diagnosis algorithms.
Collapse
Affiliation(s)
- Weixuan Liu
- Sydney Smart Technology College, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China; (W.L.); (B.Z.)
| | - Bairui Zhang
- Sydney Smart Technology College, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China; (W.L.); (B.Z.)
| | - Tao Liu
- School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China;
| | - Juntao Jiang
- College of Control Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yong Liu
- College of Control Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Barat M, Pellat A, Hoeffel C, Dohan A, Coriat R, Fishman EK, Nougaret S, Chu L, Soyer P. CT and MRI of abdominal cancers: current trends and perspectives in the era of radiomics and artificial intelligence. Jpn J Radiol 2024; 42:246-260. [PMID: 37926780 DOI: 10.1007/s11604-023-01504-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Abdominal cancers continue to pose daily challenges to clinicians, radiologists and researchers. These challenges are faced at each stage of abdominal cancer management, including early detection, accurate characterization, precise assessment of tumor spread, preoperative planning when surgery is anticipated, prediction of tumor aggressiveness, response to therapy, and detection of recurrence. Technical advances in medical imaging, often in combination with imaging biomarkers, show great promise in addressing such challenges. Information extracted from imaging datasets owing to the application of radiomics can be used to further improve the diagnostic capabilities of imaging. However, the analysis of the huge amount of data provided by these advances is a difficult task in daily practice. Artificial intelligence has the potential to help radiologists in all these challenges. Notably, the applications of AI in the field of abdominal cancers are expanding and now include diverse approaches for cancer detection, diagnosis and classification, genomics and detection of genetic alterations, analysis of tumor microenvironment, identification of predictive biomarkers and follow-up. However, AI currently has some limitations that need further refinement for implementation in the clinical setting. This review article sums up recent advances in imaging of abdominal cancers in the field of image/data acquisition, tumor detection, tumor characterization, prognosis, and treatment response evaluation.
Collapse
Affiliation(s)
- Maxime Barat
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France
| | - Anna Pellat
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France
- Department of Gastroenterology and Digestive Oncology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France
| | - Christine Hoeffel
- Department of Radiology, Hopital Robert Debré, CHU Reims, Université Champagne-Ardennes, 51092, Reims, France
| | - Anthony Dohan
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France
| | - Romain Coriat
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France
- Department of Gastroenterology and Digestive Oncology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France
| | - Elliot K Fishman
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Stéphanie Nougaret
- Department of Radiology, Montpellier Cancer Institute, 34000, Montpellier, France
- PINKCC Lab, IRCM, U1194, 34000, Montpellier, France
| | - Linda Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Philippe Soyer
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France.
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France.
| |
Collapse
|
11
|
Patel H, Zanos T, Hewitt DB. Deep Learning Applications in Pancreatic Cancer. Cancers (Basel) 2024; 16:436. [PMID: 38275877 PMCID: PMC10814475 DOI: 10.3390/cancers16020436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Pancreatic cancer is one of the most lethal gastrointestinal malignancies. Despite advances in cross-sectional imaging, chemotherapy, radiation therapy, and surgical techniques, the 5-year overall survival is only 12%. With the advent and rapid adoption of AI across all industries, we present a review of applications of DL in the care of patients diagnosed with PC. A review of different DL techniques with applications across diagnosis, management, and monitoring is presented across the different pathological subtypes of pancreatic cancer. This systematic review highlights AI as an emerging technology in the care of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Hardik Patel
- Northwell Health—The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA;
| | - Theodoros Zanos
- Northwell Health—The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA;
| | - D. Brock Hewitt
- Department of Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA;
| |
Collapse
|
12
|
Nakajo M, Jinguji M, Ito S, Tani A, Hirahara M, Yoshiura T. Clinical application of 18F-fluorodeoxyglucose positron emission tomography/computed tomography radiomics-based machine learning analyses in the field of oncology. Jpn J Radiol 2024; 42:28-55. [PMID: 37526865 PMCID: PMC10764437 DOI: 10.1007/s11604-023-01476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Machine learning (ML) analyses using 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) radiomics features have been applied in the field of oncology. The current review aimed to summarize the current clinical articles about 18F-FDG PET/CT radiomics-based ML analyses to solve issues in classifying or constructing prediction models for several types of tumors. In these studies, lung and mediastinal tumors were the most commonly evaluated lesions, followed by lymphatic, abdominal, head and neck, breast, gynecological, and other types of tumors. Previous studies have commonly shown that 18F-FDG PET radiomics-based ML analysis has good performance in differentiating benign from malignant tumors, predicting tumor characteristics and stage, therapeutic response, and prognosis by examining significant differences in the area under the receiver operating characteristic curves, accuracies, or concordance indices (> 0.70). However, these studies have reported several ML algorithms. Moreover, different ML models have been applied for the same purpose. Thus, various procedures were used in 18F-FDG PET/CT radiomics-based ML analysis in oncology, and 18F-FDG PET/CT radiomics-based ML models, which are easy and universally applied in clinical practice, would be expected to be established.
Collapse
Affiliation(s)
- Masatoyo Nakajo
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Megumi Jinguji
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Soichiro Ito
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Atushi Tani
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Mitsuho Hirahara
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takashi Yoshiura
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
13
|
Li L, Zhou X, Cui W, Li Y, Liu T, Yuan G, Peng Y, Zheng J. Combining radiomics and deep learning features of intra-tumoral and peri-tumoral regions for the classification of breast cancer lung metastasis and primary lung cancer with low-dose CT. J Cancer Res Clin Oncol 2023; 149:15469-15478. [PMID: 37642722 DOI: 10.1007/s00432-023-05329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE To investigate the performance of deep learning and radiomics features of intra-tumoral region (ITR) and peri-tumoral region (PTR) in the diagnosing of breast cancer lung metastasis (BCLM) and primary lung cancer (PLC) with low-dose CT (LDCT). METHODS We retrospectively collected the LDCT images of 100 breast cancer patients with lung lesions, comprising 60 cases of BCLM and 40 cases of PLC. We proposed a fusion model that combined deep learning features extracted from ResNet18-based multi-input residual convolution network with traditional radiomics features. Specifically, the fusion model adopted a multi-region strategy, incorporating the aforementioned features from both the ITR and PTR. Then, we randomly divided the dataset into training and validation sets using fivefold cross-validation approach. Comprehensive comparative experiments were performed between the proposed fusion model and other eight models, including the intra-tumoral deep learning model, the intra-tumoral radiomics model, the intra-tumoral deep-learning radiomics model, the peri-tumoral deep learning model, the peri-tumoral radiomics model, the peri-tumoral deep-learning radiomics model, the multi-region radiomics model, and the multi-region deep-learning model. RESULTS The fusion model developed using deep-learning radiomics feature sets extracted from the ITR and PTR had the best classification performance, with the area under the curve of 0.913 (95% CI 0.840-0.960). This was significantly higher than that of the single region's radiomics model or deep learning model. CONCLUSIONS The combination of radiomics and deep learning features was effective in discriminating BCLM and PLC. Additionally, the analysis of the PTR can mine more comprehensive tumor information.
Collapse
Affiliation(s)
- Lei Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Xinglu Zhou
- Department of PET/CT Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Radiology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Wenju Cui
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Yingci Li
- Department of PET/CT Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Tianyi Liu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Gang Yuan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| | - Yunsong Peng
- Department of Medical Imaging, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People's Hospital, Guizhou, 550002, China.
| | - Jian Zheng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| |
Collapse
|
14
|
Hirata K, Kamagata K, Ueda D, Yanagawa M, Kawamura M, Nakaura T, Ito R, Tatsugami F, Matsui Y, Yamada A, Fushimi Y, Nozaki T, Fujita S, Fujioka T, Tsuboyama T, Fujima N, Naganawa S. From FDG and beyond: the evolving potential of nuclear medicine. Ann Nucl Med 2023; 37:583-595. [PMID: 37749301 DOI: 10.1007/s12149-023-01865-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023]
Abstract
The radiopharmaceutical 2-[fluorine-18]fluoro-2-deoxy-D-glucose (FDG) has been dominantly used in positron emission tomography (PET) scans for over 20 years, and due to its vast utility its applications have expanded and are continuing to expand into oncology, neurology, cardiology, and infectious/inflammatory diseases. More recently, the addition of artificial intelligence (AI) has enhanced nuclear medicine diagnosis and imaging with FDG-PET, and new radiopharmaceuticals such as prostate-specific membrane antigen (PSMA) and fibroblast activation protein inhibitor (FAPI) have emerged. Nuclear medicine therapy using agents such as [177Lu]-dotatate surpasses conventional treatments in terms of efficacy and side effects. This article reviews recently established evidence of FDG and non-FDG drugs and anticipates the future trajectory of nuclear medicine.
Collapse
Affiliation(s)
- Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo Chuo-ku, Kumamoto, 860-8556, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-2621, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Shohei Fujita
- Department of Radiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N15, W5, Kita-ku, Sapporo, 060-8638, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
15
|
Ansari G, Mirza-Aghazadeh-Attari M, Mohseni A, Madani SP, Shahbazian H, Pawlik TM, Kamel IR. Response Assessment of Primary Liver Tumors to Novel Therapies: an Imaging Perspective. J Gastrointest Surg 2023; 27:2245-2259. [PMID: 37464140 DOI: 10.1007/s11605-023-05762-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/11/2023] [Indexed: 07/20/2023]
Abstract
The latest developments in cancer immunotherapy, namely the introduction of immune checkpoint inhibitors, have led to a fundamental change in advanced cancer treatments. Imaging is crucial to identify tumor response accurately and delineate prognosis in immunotherapy-treated patients. Simultaneously, advances in image acquisition techniques, notably functional and molecular imaging, have facilitated more accurate pretreatment evaluation, assessment of response to therapy, and monitoring for tumor recurrence. Traditional approaches to assessing tumor progression, such as RECIST, rely on changes in tumor size, while new strategies for evaluating tumor response to therapy, such as the mRECIST and the EASL, rely on tumor enhancement. Moreover, the assessment of tumor volume, enhancement, cellularity, and perfusion are some novel techniques that have been investigated. Validation of these novel approaches should rely on comparing their results with those of standard evaluation methods (EASL, mRECIST) while considering the ultimate outcome, which is patient survival. More recently, immunotherapy has been used in the management of primary liver tumors. However, little is known about its efficacy. This article reviews imaging modalities and techniques for assessing tumor response and survival in immunotherapy-treated patients with primary hepatic malignancies.
Collapse
Affiliation(s)
- Golnoosh Ansari
- Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, 600 North Wolfe Street, MRI 143, Baltimore, MD, 21287, USA
| | - Mohammad Mirza-Aghazadeh-Attari
- Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, 600 North Wolfe Street, MRI 143, Baltimore, MD, 21287, USA
| | - Alireza Mohseni
- Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, 600 North Wolfe Street, MRI 143, Baltimore, MD, 21287, USA
| | - Seyedeh Panid Madani
- Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, 600 North Wolfe Street, MRI 143, Baltimore, MD, 21287, USA
| | - Haneyeh Shahbazian
- Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, 600 North Wolfe Street, MRI 143, Baltimore, MD, 21287, USA
| | - Timothy M Pawlik
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, James Comprehensive Cancer Center, Columbus, OH, USA
| | - Ihab R Kamel
- Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, 600 North Wolfe Street, MRI 143, Baltimore, MD, 21287, USA.
| |
Collapse
|
16
|
Yao L, Zhang Z, Keles E, Yazici C, Tirkes T, Bagci U. A review of deep learning and radiomics approaches for pancreatic cancer diagnosis from medical imaging. Curr Opin Gastroenterol 2023; 39:436-447. [PMID: 37523001 PMCID: PMC10403281 DOI: 10.1097/mog.0000000000000966] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
PURPOSE OF REVIEW Early and accurate diagnosis of pancreatic cancer is crucial for improving patient outcomes, and artificial intelligence (AI) algorithms have the potential to play a vital role in computer-aided diagnosis of pancreatic cancer. In this review, we aim to provide the latest and relevant advances in AI, specifically deep learning (DL) and radiomics approaches, for pancreatic cancer diagnosis using cross-sectional imaging examinations such as computed tomography (CT) and magnetic resonance imaging (MRI). RECENT FINDINGS This review highlights the recent developments in DL techniques applied to medical imaging, including convolutional neural networks (CNNs), transformer-based models, and novel deep learning architectures that focus on multitype pancreatic lesions, multiorgan and multitumor segmentation, as well as incorporating auxiliary information. We also discuss advancements in radiomics, such as improved imaging feature extraction, optimized machine learning classifiers and integration with clinical data. Furthermore, we explore implementing AI-based clinical decision support systems for pancreatic cancer diagnosis using medical imaging in practical settings. SUMMARY Deep learning and radiomics with medical imaging have demonstrated strong potential to improve diagnostic accuracy of pancreatic cancer, facilitate personalized treatment planning, and identify prognostic and predictive biomarkers. However, challenges remain in translating research findings into clinical practice. More studies are required focusing on refining these methods, addressing significant limitations, and developing integrative approaches for data analysis to further advance the field of pancreatic cancer diagnosis.
Collapse
Affiliation(s)
- Lanhong Yao
- Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University
| | - Zheyuan Zhang
- Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University
| | - Elif Keles
- Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University
| | - Cemal Yazici
- Division of Gastroentrrology and Hepatology, University of Illinois Chicago, Chicago, Illinois
| | - Temel Tirkes
- Department of Radiology & Imaging Sciences, Medicine and Urology, Indiana University School of Medicine, Indianapolis, Indianapolis, USA
| | - Ulas Bagci
- Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University
| |
Collapse
|
17
|
Zhang G, Bao C, Liu Y, Wang Z, Du L, Zhang Y, Wang F, Xu B, Zhou SK, Liu R. 18F-FDG-PET/CT-based deep learning model for fully automated prediction of pathological grading for pancreatic ductal adenocarcinoma before surgery. EJNMMI Res 2023; 13:49. [PMID: 37231321 DOI: 10.1186/s13550-023-00985-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The determination of pathological grading has a guiding significance for the treatment of pancreatic ductal adenocarcinoma (PDAC) patients. However, there is a lack of an accurate and safe method to obtain pathological grading before surgery. The aim of this study is to develop a deep learning (DL) model based on 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG-PET/CT) for a fully automatic prediction of preoperative pathological grading of pancreatic cancer. METHODS A total of 370 PDAC patients from January 2016 to September 2021 were collected retrospectively. All patients underwent 18F-FDG-PET/CT examination before surgery and obtained pathological results after surgery. A DL model for pancreatic cancer lesion segmentation was first developed using 100 of these cases and applied to the remaining cases to obtain lesion regions. After that, all patients were divided into training set, validation set, and test set according to the ratio of 5:1:1. A predictive model of pancreatic cancer pathological grade was developed using the features computed from the lesion regions obtained by the lesion segmentation model and key clinical characteristics of the patients. Finally, the stability of the model was verified by sevenfold cross-validation. RESULTS The Dice score of the developed PET/CT-based tumor segmentation model for PDAC was 0.89. The area under curve (AUC) of the PET/CT-based DL model developed on the basis of the segmentation model was 0.74, with an accuracy, sensitivity, and specificity of 0.72, 0.73, and 0.72, respectively. After integrating key clinical data, the AUC of the model improved to 0.77, with its accuracy, sensitivity, and specificity boosted to 0.75, 0.77, and 0.73, respectively. CONCLUSION To the best of our knowledge, this is the first deep learning model to end-to-end predict the pathological grading of PDAC in a fully automatic manner, which is expected to improve clinical decision-making.
Collapse
Affiliation(s)
- Gong Zhang
- Medical School of Chinese PLA, Beijing, China
- Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Chengkai Bao
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China
| | - Yanzhe Liu
- Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Zizheng Wang
- Senior Department of Hepatology, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lei Du
- Department of Nuclear Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yue Zhang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China
| | - Fei Wang
- Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Baixuan Xu
- Department of Nuclear Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.
| | - S Kevin Zhou
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China.
| | - Rong Liu
- Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|