1
|
Asbjarnarson A, Joelsson JP, Gardarsson FR, Sigurdsson S, Parnham MJ, Kricker JA, Gudjonsson T. The Non-Antibacterial Effects of Azithromycin and Other Macrolides on the Bronchial Epithelial Barrier and Cellular Differentiation. Int J Mol Sci 2025; 26:2287. [PMID: 40076911 PMCID: PMC11900332 DOI: 10.3390/ijms26052287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
The respiratory epithelium maintains the barrier against inhaled harmful agents. When barrier failure occurs, as in several respiratory diseases, acute or chronic inflammation leading to destructive effects and exacerbations can occur. Macrolides are used to treat a spectrum of infections but are also known for off-label use. Some macrolides, particularly azithromycin (AZM), reduce exacerbations in chronic obstructive pulmonary disease (COPD), whereby its efficacy is thought to be due to its effects on inflammation and oxidative stress. In vitro data indicate that AZM reduces epithelial barrier failure, evidenced by increased transepithelial electrical resistance (TEER). Here, we compared the effects of macrolides on differentiation and barrier integrity in VA10 cells, a bronchial epithelial cell line for 14 and 21 days. Erythromycin, clarithromycin, roxithromycin, AZM, solithromycin, and tobramycin (an aminoglycoside) were analyzed using RNA sequencing, barrier integrity assays, and immunostaining to evaluate effects on the epithelium. All macrolides affected the gene expression of pathways involved in epithelial-to-mesenchymal transition, metabolism, and immunomodulation. Treatment with AZM, clarithromycin, and erythromycin raised TEER and induced phospholipid retention. AZM treatment was distinct in terms of enhancement of the epithelial barrier, retention of phospholipids, vesicle build-up, and its effect on gene sets related to keratinocyte differentiation and establishment of skin barrier.
Collapse
Affiliation(s)
- Arni Asbjarnarson
- School of Health Sciences, University of Iceland, 101 Reykjavík, Iceland
| | - Jon Petur Joelsson
- School of Health Sciences, University of Iceland, 101 Reykjavík, Iceland
| | | | - Snaevar Sigurdsson
- School of Health Sciences, University of Iceland, 101 Reykjavík, Iceland
| | | | | | - Thorarinn Gudjonsson
- School of Health Sciences, University of Iceland, 101 Reykjavík, Iceland
- Department of Laboratory Hematology, Landspítali-University Hospital, 101 Reykjavík, Iceland
| |
Collapse
|
2
|
Myszor IT, Lapka K, Hermannsson K, Rekha RS, Bergman P, Gudmundsson GH. Bile acid metabolites enhance expression of cathelicidin antimicrobial peptide in airway epithelium through activation of the TGR5-ERK1/2 pathway. Sci Rep 2024; 14:6750. [PMID: 38514730 PMCID: PMC10957955 DOI: 10.1038/s41598-024-57251-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
Signals for the maintenance of epithelial homeostasis are provided in part by commensal bacteria metabolites, that promote tissue homeostasis in the gut and remote organs as microbiota metabolites enter the bloodstream. In our study, we investigated the effects of bile acid metabolites, 3-oxolithocholic acid (3-oxoLCA), alloisolithocholic acid (AILCA) and isolithocholic acid (ILCA) produced from lithocholic acid (LCA) by microbiota, on the regulation of innate immune responses connected to the expression of host defense peptide cathelicidin in lung epithelial cells. The bile acid metabolites enhanced expression of cathelicidin at low concentrations in human bronchial epithelial cell line BCi-NS1.1 and primary bronchial/tracheal cells (HBEpC), indicating physiological relevance for modulation of innate immunity in airway epithelium by bile acid metabolites. Our study concentrated on deciphering signaling pathways regulating expression of human cathelicidin, revealing that LCA and 3-oxoLCA activate the surface G protein-coupled bile acid receptor 1 (TGR5, Takeda-G-protein-receptor-5)-extracellular signal-regulated kinase (ERK1/2) cascade, rather than the nuclear receptors, aryl hydrocarbon receptor, farnesoid X receptor and vitamin D3 receptor in bronchial epithelium. Overall, our study provides new insights into the modulation of innate immune responses by microbiota bile acid metabolites in the gut-lung axis, highlighting the differences in epithelial responses between different tissues.
Collapse
Affiliation(s)
- Iwona T Myszor
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Kornelia Lapka
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Kristjan Hermannsson
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Rokeya Sultana Rekha
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Gudmundur Hrafn Gudmundsson
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland.
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Mahieu L, Van Moll L, De Vooght L, Delputte P, Cos P. In vitro modelling of bacterial pneumonia: a comparative analysis of widely applied complex cell culture models. FEMS Microbiol Rev 2024; 48:fuae007. [PMID: 38409952 PMCID: PMC10913945 DOI: 10.1093/femsre/fuae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024] Open
Abstract
Bacterial pneumonia greatly contributes to the disease burden and mortality of lower respiratory tract infections among all age groups and risk profiles. Therefore, laboratory modelling of bacterial pneumonia remains important for elucidating the complex host-pathogen interactions and to determine drug efficacy and toxicity. In vitro cell culture enables for the creation of high-throughput, specific disease models in a tightly controlled environment. Advanced human cell culture models specifically, can bridge the research gap between the classical two-dimensional cell models and animal models. This review provides an overview of the current status of the development of complex cellular in vitro models to study bacterial pneumonia infections, with a focus on air-liquid interface models, spheroid, organoid, and lung-on-a-chip models. For the wide scale, comparative literature search, we selected six clinically highly relevant bacteria (Pseudomonas aeruginosa, Mycoplasma pneumoniae, Haemophilus influenzae, Mycobacterium tuberculosis, Streptococcus pneumoniae, and Staphylococcus aureus). We reviewed the cell lines that are commonly used, as well as trends and discrepancies in the methodology, ranging from cell infection parameters to assay read-outs. We also highlighted the importance of model validation and data transparency in guiding the research field towards more complex infection models.
Collapse
Affiliation(s)
- Laure Mahieu
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Laurence Van Moll
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
4
|
Bostancieri N, Bakir K, Kul S, Eralp A, Kayalar O, Konyalilar N, Rajabi H, Yuncu M, Yildirim AÖ, Bayram H. The effect of multiple outgrowths from bronchial tissue explants on progenitor/stem cell number in primary bronchial epithelial cell cultures from smokers and patients with COPD. Front Med (Lausanne) 2023; 10:1118715. [PMID: 37908857 PMCID: PMC10614425 DOI: 10.3389/fmed.2023.1118715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
Background Although studies suggest a deficiency in stem cell numbers in chronic airway diseases such as chronic obstructive pulmonary disease (COPD), the role of bronchial epithelial progenitor/stem (P/S) cells is not clear. The objectives of this study were to investigate expression of progenitor/stem (P/S) cell markers, cytokeratin (CK) 5, CK14 and p63 in bronchial epithelial explants and cell cultures obtained from smokers with and without COPD following multiple outgrowths, and to study this effect on bronchial epithelial cell (BEC) proliferation. Methods Bronchial epithelial explants were dissected from lung explants and cultured on coverslips. Confluent cultures were obtained after 3-4 weeks' (transfer, Tr1), explants were then transferred and cultured for a second (Tr2) and third (Tr3) time, respectively. At each stage, expression of CK5, CK14 and p63 in explants and BEC were determined by immunostaining. In parallel experiments, outgrowing cells from explants were counted after 4wks, and explants subsequently transferred to obtain new cultures for a further 3 times. Results As the transfer number advanced, CK5, CK14 and p63 expression was decreased in both explants and BEC from both smokers without COPD and patients with COPD, with a more pronounced decrease in BEC numbers in the COPD group. Total cell numbers cultured from explants were decreased with advancing outgrowth number in both groups. Smoking status and lung function parameters were correlated with reduced P/S marker expression and cell numbers. Conclusion Our findings suggest that the number of P/S cells in airway epithelium may play a role in the pathogenesis of COPD, as well as a role in the proliferation of airway epithelial cells, in vitro.
Collapse
Affiliation(s)
- Nuray Bostancieri
- Department of Histology and Embryology, School of Medicine, University of Gaziantep, Gaziantep, Türkiye
- Cell Culture Laboratory, Department of Chest Diseases, School of Medicine, University of Gaziantep, Gaziantep, Türkiye
| | - Kemal Bakir
- Department of Pathology, School of Medicine, University of Gaziantep, Gaziantep, Türkiye
| | - Seval Kul
- Department of Biostatistics, School of Medicine, University of Gaziantep, Gaziantep, Türkiye
| | - Ayhan Eralp
- Department of Histology and Embryology, School of Medicine, University of Gaziantep, Gaziantep, Türkiye
| | - Ozgecan Kayalar
- Koc University Research Center for Translational Medicine, Koc University, Istanbul, Türkiye
| | - Nur Konyalilar
- Koc University Research Center for Translational Medicine, Koc University, Istanbul, Türkiye
| | - Hadi Rajabi
- Koc University Research Center for Translational Medicine, Koc University, Istanbul, Türkiye
| | - Mehmet Yuncu
- Department of Histology and Embryology, School of Medicine, University of Gaziantep, Gaziantep, Türkiye
| | - Ali Önder Yildirim
- Koc University Research Center for Translational Medicine, Koc University, Istanbul, Türkiye
- Comprehensive Pneumology Center (CPC), Institute of Lung Health and Immunity (LHI), Member of the German Center for Lung Research (DZL), Helmholtz Munich, Munich, Germany
| | - Hasan Bayram
- Cell Culture Laboratory, Department of Chest Diseases, School of Medicine, University of Gaziantep, Gaziantep, Türkiye
- Koc University Research Center for Translational Medicine, Koc University, Istanbul, Türkiye
| |
Collapse
|
5
|
Mir M, Chen J, Pinezich MR, O'Neill JD, Huang SXL, Vunjak-Novakovic G, Kim J. Imaging-guided bioreactor for de-epithelialization and long-term cultivation of ex vivo rat trachea. LAB ON A CHIP 2022; 22:1018-1031. [PMID: 35166739 PMCID: PMC8942046 DOI: 10.1039/d1lc01105g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Recent synergistic advances in organ-on-chip and tissue engineering technologies offer opportunities to create in vitro-grown tissue or organ constructs that can faithfully recapitulate their in vivo counterparts. Such in vitro tissue or organ constructs can be utilized in multiple applications, including rapid drug screening, high-fidelity disease modeling, and precision medicine. Here, we report an imaging-guided bioreactor that allows in situ monitoring of the lumen of ex vivo airway tissues during controlled in vitro tissue manipulation and cultivation of isolated rat trachea. Using this platform, we demonstrated partial removal of the rat tracheal epithelium (i.e., de-epithelialization) without disrupting the underlying subepithelial cells and extracellular matrix. Through different tissue evaluation assays, such as immunofluorescent staining, DNA/protein quantification, and electron beam microscopy, we showed that the epithelium of the tracheal lumen can be effectively removed with negligible disruption in the underlying tissue layers, such as cartilage and blood vessel. Notably, using a custom-built micro-optical imaging device integrated with the bioreactor, the trachea lumen was visualized at the cellular level, and removal of the endogenous epithelium and distribution of locally delivered exogenous cells were demonstrated in situ. Moreover, the de-epithelialized trachea supported on the bioreactor allowed attachment and growth of exogenous cells seeded topically on its denuded tissue surface. Collectively, the results suggest that our imaging-enabled rat trachea bioreactor and localized cell replacement method can facilitate creation of bioengineered in vitro airway tissue that can be used in different biomedical applications.
Collapse
Affiliation(s)
- Mohammad Mir
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA.
| | - Jiawen Chen
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA.
| | - Meghan R Pinezich
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - John D O'Neill
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Sarah X L Huang
- Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center, Houston, TX, USA
| | | | - Jinho Kim
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA.
| |
Collapse
|
6
|
Selo MA, Sake JA, Kim KJ, Ehrhardt C. In vitro and ex vivo models in inhalation biopharmaceutical research - advances, challenges and future perspectives. Adv Drug Deliv Rev 2021; 177:113862. [PMID: 34256080 DOI: 10.1016/j.addr.2021.113862] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Oral inhalation results in pulmonary drug targeting and thereby reduces systemic side effects, making it the preferred means of drug delivery for the treatment of respiratory disorders such as asthma, chronic obstructive pulmonary disease or cystic fibrosis. In addition, the high alveolar surface area, relatively low enzymatic activity and rich blood supply of the distal airspaces offer a promising pathway to the systemic circulation. This is particularly advantageous when a rapid onset of pharmacological action is desired or when the drug is suffering from stability issues or poor biopharmaceutical performance following oral administration. Several cell and tissue-based in vitro and ex vivo models have been developed over the years, with the intention to realistically mimic pulmonary biological barriers. It is the aim of this review to critically discuss the available models regarding their advantages and limitations and to elaborate further which biopharmaceutical questions can and cannot be answered using the existing models.
Collapse
|
7
|
Orimoto A, Takahashi K, Imai M, Kiyono T, Kawaoka Y, Fukuda T. Establishment of human airway epithelial cells with doxycycline-inducible cell growth and fluorescence reporters. Cytotechnology 2021; 73:555-569. [PMID: 34349346 DOI: 10.1007/s10616-021-00477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/13/2021] [Indexed: 11/29/2022] Open
Abstract
We previously reported the successful establishment of multiple immortalized cell lines that preserved the original nature of the primary cells via co-expression of R24C mutant cyclin-dependent kinase 4 (CDK4R24C), Cyclin D1, and telomerase reverse transcriptase (TERT). However, as these genes are kind of oncogenes, tools to control their expression levels are favorable. In this study, we describe a new polycistronic lentiviral vector expressing proliferation factors, CDK4R24C and Cyclin D1 along with enhanced green fluorescence protein (EGFP) under the control of doxycycline (Dox)-dependent transactivator (rtTA) and tetracycline response element (TRE). By introducing the Dox-inducible lentiviral vector into human airway epithelial cells, we established a novel human airway epithelial cell line harboring polycistronic Dox-inducible CDK4R24C and Cyclin D1, referred to as Tet-on K4D cells. We showed that the cell growth of Tet-on K4D cells could be controlled by Dox. Furthermore, expression of K4D genes and rtTA gene can be independently monitored by fluorescent imaging. Cultured airway epithelial cells are useful as a tool for studying the pathogenesis of lung disorders. Altogether, our established human airway epithelial cells could be used for a variety of studies such as lung pathology and biology underlying the differentiation process to form the complex pseudostratified multicellular layers. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-021-00477-0.
Collapse
Affiliation(s)
- Ai Orimoto
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate Japan
| | - Kohei Takahashi
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate Japan
| | - Masaki Imai
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-Related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tomokazu Fukuda
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate Japan
| |
Collapse
|
8
|
Berry SB, Haack AJ, Theberge AB, Brighenti S, Svensson M. Host and Pathogen Communication in the Respiratory Tract: Mechanisms and Models of a Complex Signaling Microenvironment. Front Med (Lausanne) 2020; 7:537. [PMID: 33015094 PMCID: PMC7511576 DOI: 10.3389/fmed.2020.00537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/29/2020] [Indexed: 01/15/2023] Open
Abstract
Chronic lung diseases are a leading cause of morbidity and mortality across the globe, encompassing a diverse range of conditions from infections with pathogenic microorganisms to underlying genetic disorders. The respiratory tract represents an active interface with the external environment having the primary immune function of resisting pathogen intrusion and maintaining homeostasis in response to the myriad of stimuli encountered within its microenvironment. To perform these vital functions and prevent lung disorders, a chemical and biological cross-talk occurs in the complex milieu of the lung that mediates and regulates the numerous cellular processes contributing to lung health. In this review, we will focus on the role of cross-talk in chronic lung infections, and discuss how different cell types and signaling pathways contribute to the chronicity of infection(s) and prevent effective immune clearance of pathogens. In the lung microenvironment, pathogens have developed the capacity to evade mucosal immunity using different mechanisms or virulence factors, leading to colonization and infection of the host; such mechanisms include the release of soluble and volatile factors, as well as contact dependent (juxtracrine) interactions. We explore the diverse modes of communication between the host and pathogen in the lung tissue milieu in the context of chronic lung infections. Lastly, we review current methods and approaches used to model and study these host-pathogen interactions in vitro, and the role of these technological platforms in advancing our knowledge about chronic lung diseases.
Collapse
Affiliation(s)
- Samuel B. Berry
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Amanda J. Haack
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | | | - Susanna Brighenti
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Svensson
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Arason AJ, Joelsson JP, Valdimarsdottir B, Sigurdsson S, Gudjonsson A, Halldorsson S, Johannsson F, Rolfsson O, Lehmann F, Ingthorsson S, Cherek P, Gudmundsson GH, Gardarsson FR, Page CP, Baldursson O, Gudjonsson T, Kricker JA. Azithromycin induces epidermal differentiation and multivesicular bodies in airway epithelia. Respir Res 2019; 20:129. [PMID: 31234850 PMCID: PMC6591972 DOI: 10.1186/s12931-019-1101-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023] Open
Abstract
Background Azithromycin (Azm) is a macrolide recognized for its disease-modifying effects and reduction in exacerbation of chronic airway diseases. It is not clear whether the beneficial effects of Azm are due to its anti-microbial activity or other pharmacological actions. We have shown that Azm affects the integrity of the bronchial epithelial barrier measured by increased transepithelial electrical resistance. To better understand these effects of Azm on bronchial epithelia we have investigated global changes in gene expression. Methods VA10 bronchial epithelial cells were treated with Azm and cultivated in air-liquid interface conditions for up to 22 days. RNA was isolated at days 4, 10 and 22 and analyzed using high-throughput RNA sequencing. qPCR and immunostaining were used to confirm key findings from bioinformatic analyses. Detailed assessment of cellular changes was done using microscopy, followed by characterization of the lipidomic profiles of the multivesicular bodies present. Results Bioinformatic analysis revealed that after 10 days of treatment genes encoding effectors of sterol and cholesterol metabolism were prominent. Interestingly, expression of genes associated with epidermal barrier differentiation, KRT1, CRNN, SPINK5 and DSG1, increased significantly at day 22. Together with immunostaining, these results suggest an epidermal differentiation pattern. We also found that Azm induced the formation of multivesicular and lamellar bodies in two different airway epithelial cell lines. Lipidomic analysis revealed that Azm was entrapped in multivesicular bodies linked to different types of lipids, most notably palmitate and stearate. Furthermore, targeted analysis of lipid species showed accumulation of phosphatidylcholines, as well as ceramide derivatives. Conclusions Taken together, we demonstrate how Azm might confer its barrier enhancing effects, via activation of epidermal characteristics and changes to intracellular lipid dynamics. These effects of Azm could explain the unexpected clinical benefit observed during Azm-treatment of patients with various lung diseases affecting barrier function. Electronic supplementary material The online version of this article (10.1186/s12931-019-1101-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ari Jon Arason
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland.,EpiEndo Pharmaceuticals, Reykjavík, Iceland
| | - Jon Petur Joelsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Bryndis Valdimarsdottir
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland.,EpiEndo Pharmaceuticals, Reykjavík, Iceland
| | - Snaevar Sigurdsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Alexander Gudjonsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | | | - Freyr Johannsson
- Center for Systems Biology, University of Iceland, Reykjavík, Iceland
| | - Ottar Rolfsson
- Center for Systems Biology, University of Iceland, Reykjavík, Iceland
| | | | - Saevar Ingthorsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland.,EpiEndo Pharmaceuticals, Reykjavík, Iceland
| | - Paulina Cherek
- Department of Anatomy, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Gudmundur H Gudmundsson
- BioMedical Center, Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | | | - Clive P Page
- EpiEndo Pharmaceuticals, Reykjavík, Iceland.,Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Olafur Baldursson
- EpiEndo Pharmaceuticals, Reykjavík, Iceland.,Department of Respiratory Medicine, Landspitali-University Hospital, Reykjavík, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland.,Department of Laboratory Hematology, Landspitali-University Hospital, Iceland, Reykjavík, Iceland.,EpiEndo Pharmaceuticals, Reykjavík, Iceland
| | - Jennifer A Kricker
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland. .,EpiEndo Pharmaceuticals, Reykjavík, Iceland.
| |
Collapse
|
10
|
Myszor IT, Parveen Z, Ottosson H, Bergman P, Agerberth B, Strömberg R, Gudmundsson GH. Novel aroylated phenylenediamine compounds enhance antimicrobial defense and maintain airway epithelial barrier integrity. Sci Rep 2019; 9:7114. [PMID: 31068616 PMCID: PMC6506505 DOI: 10.1038/s41598-019-43350-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/18/2019] [Indexed: 01/19/2023] Open
Abstract
Aroylated phenylenediamines (APDs) are novel inducers of innate immunity enhancing cathelicidin gene expression in human bronchial epithelial cell lines. Here we present two newly developed APDs and aimed at defining the response and signaling pathways for these compounds with reference to innate immunity and antimicrobial peptide (AMP) expression. Induction was initially defined with respect to dose and time and compared with the APD Entinostat (MS-275). The induction applies to several innate immunity effectors, indicating that APDs trigger a broad spectrum of antimicrobial responses. The bactericidal effect was shown in an infection model against Pseudomonas aeruginosa by estimating bacteria entering cells. Treatment with a selected APD counteracted Pseudomonas mediated disruption of epithelial integrity. This double action by inducing AMPs and enhancing epithelial integrity for one APD compound is unique and taken as a positive indication for host directed therapy (HDT). The APD effects are mediated through Signal transducer and activator of transcription 3 (STAT3) activation. Utilization of induced innate immunity to fight infections can reduce antibiotic usage, might be effective against multidrug resistant bacteria and is in line with improved stewardship in healthcare.
Collapse
Affiliation(s)
- Iwona T Myszor
- Biomedical Center, University of Iceland, Reykjavik, 101, Iceland
| | - Zahida Parveen
- Biomedical Center, University of Iceland, Reykjavik, 101, Iceland
| | - Håkan Ottosson
- Department of Biosciences and Nutrition, Karolinska Institutet, S-14183, Huddinge, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, S-14186, Huddinge, Sweden
| | - Birgitta Agerberth
- Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, S-14186, Huddinge, Sweden
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet, S-14183, Huddinge, Sweden
| | | |
Collapse
|
11
|
Rayner RE, Makena P, Prasad GL, Cormet-Boyaka E. Optimization of Normal Human Bronchial Epithelial (NHBE) Cell 3D Cultures for in vitro Lung Model Studies. Sci Rep 2019; 9:500. [PMID: 30679531 PMCID: PMC6346027 DOI: 10.1038/s41598-018-36735-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022] Open
Abstract
Robust in vitro lung models are required for risk assessment to measure key events leading to respiratory diseases. Primary normal human bronchial epithelial cells (NHBE) represent a good lung model but obtaining well-differentiated 3D cultures can be challenging. Here, we evaluated the ability to expand primary NHBE cells in different culture conditions while maintaining their 3D culture characteristics such as ciliated and goblet cells, and ion channel function. Differentiated cultures were optimally obtained with PneumaCult-Ex Plus (expansion medium)/PneumaCult-ALI (differentiation medium). Primary cells passaged up to four times maintained airway epithelial characteristics as evidenced by ciliated pseudostratified columnar epithelium with goblet cells, trans-epithelial electrical resistance (TEER) (>400 Ohms.cm2), and cystic fibrosis transmembrane conductance regulator-mediated short-circuit currents (>3 µA/cm2). No change in ciliary beat frequency (CBF) or airway surface liquid (ASL) meniscus length was observed up to passage six. For the first time, this study demonstrates that CFTR ion channel function and normal epithelial phenotypic characteristics are maintained in passaged primary NHBE cells. Furthermore, this study highlights the criticality of evaluating expansion and differentiation conditions for achieving optimal phenotypic and functional endpoints (CBF, ASL, ion channel function, presence of differentiated cells, TEER) when developing in vitro lung models.
Collapse
Affiliation(s)
- Rachael E Rayner
- The Ohio State University, Department of Veterinary Biosciences, Columbus, OH, 43210, USA
| | | | | | - Estelle Cormet-Boyaka
- The Ohio State University, Department of Veterinary Biosciences, Columbus, OH, 43210, USA.
| |
Collapse
|
12
|
Hasan S, Kulkarni NN, Asbjarnarson A, Linhartova I, Osicka R, Sebo P, Gudmundsson GH. Bordetella pertussis Adenylate Cyclase Toxin Disrupts Functional Integrity of Bronchial Epithelial Layers. Infect Immun 2018; 86:e00445-17. [PMID: 29203545 PMCID: PMC5820963 DOI: 10.1128/iai.00445-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
The airway epithelium restricts the penetration of inhaled pathogens into the underlying tissue and plays a crucial role in the innate immune defense against respiratory infections. The whooping cough agent, Bordetella pertussis, adheres to ciliated cells of the human airway epithelium and subverts its defense functions through the action of secreted toxins and other virulence factors. We examined the impact of B. pertussis infection and of adenylate cyclase toxin-hemolysin (CyaA) action on the functional integrity of human bronchial epithelial cells cultured at the air-liquid interface (ALI). B. pertussis adhesion to the apical surface of polarized pseudostratified VA10 cell layers provoked a disruption of tight junctions and caused a drop in transepithelial electrical resistance (TEER). The reduction of TEER depended on the capacity of the secreted CyaA toxin to elicit cAMP signaling in epithelial cells through its adenylyl cyclase enzyme activity. Both purified CyaA and cAMP-signaling drugs triggered a decrease in the TEER of VA10 cell layers. Toxin-produced cAMP signaling caused actin cytoskeleton rearrangement and induced mucin 5AC production and interleukin-6 (IL-6) secretion, while it inhibited the IL-17A-induced secretion of the IL-8 chemokine and of the antimicrobial peptide beta-defensin 2. These results indicate that CyaA toxin activity compromises the barrier and innate immune functions of Bordetella-infected airway epithelia.
Collapse
Affiliation(s)
- Shakir Hasan
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | | | | | - Irena Linhartova
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | | |
Collapse
|
13
|
Ingthorsson S, Briem E, Bergthorsson JT, Gudjonsson T. Epithelial Plasticity During Human Breast Morphogenesis and Cancer Progression. J Mammary Gland Biol Neoplasia 2016; 21:139-148. [PMID: 27815674 PMCID: PMC5159441 DOI: 10.1007/s10911-016-9366-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/23/2016] [Indexed: 01/05/2023] Open
Abstract
Understanding the complex events leading to formation of an epithelial-based organ such as the breast requires a detailed insight into the crosstalk between epithelial and stromal compartments. These interactions occur both through heterotypic cellular interactions and between cells and matrix components. While in vivo models may partially capture these complex interactions, there is a need for in- vitro models to study these events. In this review we discuss cell-cell interactions in breast development focusing on the stem cell niche and branching morphogenesis. Given the recent understanding that the basic developmental events underlying branching morphogenesis are closely related to pathways important to cancer progression, i.e. epithelial plasticity and epithelial to mesenchymal transition (EMT), we will also discuss aspects relevant to cancer progression. In cancer, the adoption of mesenchymal phenotype by the malignant cells allows stromal invasion and subsequent intravasation to blood- or lymphatic vessels, a route that is a prerequisite for metastasis. A number of publications have demonstrated that tumor initiating cells, sometimes referred to as cancer stem cells adapt an EMT phenotype that renders them more resistant to apoptosis and drug therapy. The mechanism behind this phenomenon is currently unknown but this may partially explain relapse in breast cancer patients. Increased understanding of branching morphogenesis in the breast gland and the regulation of EMT and its reverse process mesenchymal to epithelial transition (MET) may hold the keys for future development of methods/drugs that neutralize the invading properties of cancer cells.
Collapse
Affiliation(s)
- Saevar Ingthorsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Eirikur Briem
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Jon Thor Bergthorsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland
- Department of Laboratory Hematology, Landspitali, University Hospital, Reykjavík, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland.
- Department of Laboratory Hematology, Landspitali, University Hospital, Reykjavík, Iceland.
| |
Collapse
|
14
|
Buckner LR, Amedee AM, Albritton HL, Kozlowski PA, Lacour N, McGowin CL, Schust DJ, Quayle AJ. Chlamydia trachomatis Infection of Endocervical Epithelial Cells Enhances Early HIV Transmission Events. PLoS One 2016; 11:e0146663. [PMID: 26730599 PMCID: PMC4701475 DOI: 10.1371/journal.pone.0146663] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/21/2015] [Indexed: 01/20/2023] Open
Abstract
Chlamydia trachomatis causes a predominantly asymptomatic, but generally inflammatory, genital infection that is associated with an increased risk for HIV acquisition. Endocervical epithelial cells provide the major niche for this obligate intracellular bacterium in women, and the endocervix is also a tissue in which HIV transmission can occur. The mechanism by which CT infection enhances HIV susceptibility at this site, however, is not well understood. Utilizing the A2EN immortalized endocervical epithelial cell line grown on cell culture inserts, we evaluated the direct role that CT-infected epithelial cells play in facilitating HIV transmission events. We determined that CT infection significantly enhanced the apical-to-basolateral migration of cell-associated, but not cell-free, HIVBaL, a CCR5-tropic strain of virus, across the endocervical epithelial barrier. We also established that basolateral supernatants from CT-infected A2EN cells significantly enhanced HIV replication in peripheral mononuclear cells and a CCR5+ T cell line. These results suggest that CT infection of endocervical epithelial cells could facilitate both HIV crossing the mucosal barrier and subsequent infection or replication in underlying target cells. Our studies provide a mechanism by which this common STI could potentially promote the establishment of founder virus populations and the maintenance of local HIV reservoirs in the endocervix. Development of an HIV/STI co-infection model also provides a tool to further explore the role of other sexually transmitted infections in enhancing HIV acquisition.
Collapse
Affiliation(s)
- Lyndsey R. Buckner
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Angela M. Amedee
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Hannah L. Albritton
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Nedra Lacour
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Chris L. McGowin
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
- Department of Medicine, Section of Infectious Diseases, Louisiana State University Health Sciences Center, New Orleans, Louisiana, 70112, United States of America
| | - Danny J. Schust
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65201, United States of America
| | - Alison J. Quayle
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| |
Collapse
|
15
|
Karadottir H, Kulkarni NN, Gudjonsson T, Karason S, Gudmundsson GH. Cyclic mechanical stretch down-regulates cathelicidin antimicrobial peptide expression and activates a pro-inflammatory response in human bronchial epithelial cells. PeerJ 2015; 3:e1483. [PMID: 26664810 PMCID: PMC4675098 DOI: 10.7717/peerj.1483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/18/2015] [Indexed: 12/25/2022] Open
Abstract
Mechanical ventilation (MV) of patients can cause damage to bronchoalveolar epithelium, leading to a sterile inflammatory response, infection and in severe cases sepsis. Limited knowledge is available on the effects of MV on the innate immune defense system in the human lung. In this study, we demonstrate that cyclic stretch of the human bronchial epithelial cell lines VA10 and BCi NS 1.1 leads to down-regulation of cathelicidin antimicrobial peptide (CAMP) gene expression. We show that treatment of VA10 cells with vitamin D3 and/or 4-phenyl butyric acid counteracted cyclic stretch mediated down-regulation of CAMP mRNA and protein expression (LL-37). Further, we observed an increase in pro-inflammatory responses in the VA10 cell line subjected to cyclic stretch. The mRNA expression of the genes encoding pro-inflammatory cytokines IL-8 and IL-1β was increased after cyclic stretching, where as a decrease in gene expression of chemokines IP-10 and RANTES was observed. Cyclic stretch enhanced oxidative stress in the VA10 cells. The mRNA expression of toll-like receptor (TLR) 3, TLR5 and TLR8 was reduced, while the gene expression of TLR2 was increased in VA10 cells after cyclic stretch. In conclusion, our in vitro results indicate that cyclic stretch may differentially modulate innate immunity by down-regulation of antimicrobial peptide expression and increase in pro-inflammatory responses.
Collapse
Affiliation(s)
- Harpa Karadottir
- Biomedical Center and Department of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Nikhil Nitin Kulkarni
- Biomedical Center and Department of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology, Landspitali University Hospital, University of Iceland, Reykjavik, Iceland
| | - Sigurbergur Karason
- Department of Anaesthesia and Intensive Care and Faculty of Medicine, Landspitali University Hospital and University of Iceland, Reykjavik, Iceland
| | - Gudmundur Hrafn Gudmundsson
- Biomedical Center and Department of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
16
|
Basal cells of the human airways acquire mesenchymal traits in idiopathic pulmonary fibrosis and in culture. J Transl Med 2015; 95:1418-28. [PMID: 26390052 DOI: 10.1038/labinvest.2015.114] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 07/17/2015] [Accepted: 07/29/2015] [Indexed: 11/09/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with high morbidity and mortality. The cellular source of the fibrotic process is currently under debate with one suggested mechanism being epithelial-to-mesenchymal transition (EMT) in the alveolar region. In this study, we show that airway epithelium overlying fibroblastic foci in IPF contains a layer of p63-positive basal cells while lacking ciliated and goblet cells. This basal epithelium shows increased expression of CK14, Vimentin and N-cadherin while retaining E-cadherin. The underlying fibroblastic foci shows both E- and N-cadherin-positive cells. To determine if p63-positive basal cells were able to undergo EMT in culture, we treated VA10, a p63-positive basal cell line, with the serum replacement UltroserG. A sub-population of treated cells acquired a mesenchymal phenotype, including an E- to N-cadherin switch. After isolation, these cells portrayed a phenotype presenting major hallmarks of EMT (loss of epithelial markers, gain of mesenchymal markers, increased migration and anchorage-independent growth). This phenotypic switch was prevented in p63 knockdown (KD) cells. In conclusion, we show that airway epithelium overlying fibroblastic foci in IPF lacks its characteristic functional identity, shows increased reactivity of basal cells and acquisition of a partial EMT phenotype. This study suggests that some p63-positive basal cells are prone to phenotypic changes and could act as EMT progenitors in IPF.
Collapse
|
17
|
Benediktsdottir BE, Baldursson O, Gudjonsson T, Tønnesen HH, Masson M. Curcumin, bisdemethoxycurcumin and dimethoxycurcumin complexed with cyclodextrins have structure specific effect on the paracellular integrity of lung epithelia in vitro. Biochem Biophys Rep 2015; 4:405-410. [PMID: 29124231 PMCID: PMC5669517 DOI: 10.1016/j.bbrep.2015.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/31/2015] [Accepted: 11/05/2015] [Indexed: 11/17/2022] Open
Abstract
The phytochemical curcumin may improve translocation of the cystic fibrosis transmembrane regulatory (CFTR) protein in lung epithelium and therefore be helpful in the treatment of cystic fibrosis (CF) symptoms. However, previous studies often use commercial curcumin that is a combination of curcumin, demethoxycurcumin and bisdemethoxycurcumin which could affect the investigated cells differently. In the present study, we investigated the potential difference between curcumin, bisdemethoxycurcumin and dimethoxycurcumin on the epithelial tight junction complex, in the bronchial epithelial cell line VA10, by measuring transepithelial electrical resistance (TER), immunofluorescence and western blotting of tight junction proteins. The curcuminoids were complexed with hydroxypropyl-γ–cyclodextrin for increased solubility and stability. Curcumin (10 µg/ml) increased the TER significantly after 24 h of treatment while four times higher concentration of bisdemethoxycurcumin was required to obtain similar increase in TER as curcumin. Interestingly, dimethoxycurcumin did not increase TER. Curcumin clearly affected the F-actin structures both apically and basolaterally. These results begin to define possible effects of curcuminoids on healthy bronchial epithelia and shows that difference in the phenyl moiety structure of the curcuminoids influences the paracellular epithelial integrity. Curcuminoids formulized with cyclodextrin for increased solubility and stability. Curcumin increases TER in a concentration dependent manner and causes decrease in apical F-actin staining. Higher concentration required for bisdemethoxycurcumin to increase TER compared to curcumin. Dimethoxycurcumin did not increase TER.
Collapse
Affiliation(s)
- Berglind Eva Benediktsdottir
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Olafur Baldursson
- Department of Pulmonary Medicine, Landspitali-The National University Hospital of Iceland, Eiríksgata 5, IS-101 Reykjavík, Iceland
| | - Thorarinn Gudjonsson
- Biomedical Center, School of Health Sciences, University of Iceland, Vatnsmýrarvegur 16, IS-101 Reykjavík, Iceland
| | - Hanne Hjorth Tønnesen
- School of Pharmacy, Dept. of Pharmaceutics, University of Oslo, Blindern, 0136 Oslo, Norway
| | - Mar Masson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| |
Collapse
|
18
|
Sakamoto A, Matsumaru T, Yamamura N, Suzuki S, Uchida Y, Tachikawa M, Terasaki T. Drug Transporter Protein Quantification of Immortalized Human Lung Cell Lines Derived from Tracheobronchial Epithelial Cells (Calu-3 and BEAS2-B), Bronchiolar–Alveolar Cells (NCI-H292 and NCI-H441), and Alveolar Type II-like Cells (A549) by Liquid Chromatography–Tandem Mass Spectrometry. J Pharm Sci 2015; 104:3029-38. [DOI: 10.1002/jps.24381] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/18/2015] [Accepted: 01/20/2015] [Indexed: 01/08/2023]
|
19
|
Staudinger BJ, Muller JF, Halldórsson S, Boles B, Angermeyer A, Nguyen D, Rosen H, Baldursson O, Gottfreðsson M, Guðmundsson GH, Singh PK. Conditions associated with the cystic fibrosis defect promote chronic Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 2014; 189:812-24. [PMID: 24467627 DOI: 10.1164/rccm.201312-2142oc] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RATIONALE Progress has been made in understanding how the cystic fibrosis (CF) basic defect produces lung infection susceptibility. However, it remains unclear why CF exclusively leads to chronic infections that are noninvasive and highly resistant to eradication. Although biofilm formation has been suggested as a mechanism, recent work raises questions about the role of biofilms in CF. OBJECTIVES To learn how airway conditions attributed to CF transmembrane regulator dysfunction could lead to chronic infection, and to determine if biofilm-inhibiting genetic adaptations that are common in CF isolates affect the capacity of Pseudomonas aeruginosa to develop chronic infection phenotypes. METHODS We studied P. aeruginosa isolates grown in agar and mucus gels containing sputum from patients with CF and measured their susceptibility to killing by antibiotics and host defenses. We also measured the invasive virulence of P. aeruginosa grown in sputum gels using airway epithelial cells and a murine infection model. MEASUREMENTS AND MAIN RESULTS We found that conditions likely to result from increased mucus density, hyperinflammation, and defective bacterial killing could all cause P. aeruginosa to grow in bacterial aggregates. Aggregated growth markedly increased the resistance of bacteria to killing by host defenses and antibiotics, and reduced their invasiveness. In addition, we found that biofilm-inhibiting mutations do not impede aggregate formation in gel growth environments. CONCLUSIONS Our findings suggest that conditions associated with several CF pathogenesis hypotheses could cause the noninvasive and resistant infection phenotype, independently of the bacterial functions needed for biofilm formation.
Collapse
|
20
|
Arason AJ, Jonsdottir HR, Halldorsson S, Benediktsdottir BE, Bergthorsson JT, Ingthorsson S, Baldursson O, Sinha S, Gudjonsson T, Magnusson MK. deltaNp63 has a role in maintaining epithelial integrity in airway epithelium. PLoS One 2014; 9:e88683. [PMID: 24533135 PMCID: PMC3922990 DOI: 10.1371/journal.pone.0088683] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 01/09/2014] [Indexed: 11/18/2022] Open
Abstract
The upper airways are lined with a pseudostratified bronchial epithelium that forms a barrier against unwanted substances in breathing air. The transcription factor p63, which is important for stratification of skin epithelium, has been shown to be expressed in basal cells of the lungs and its ΔN isoform is recognized as a key player in squamous cell lung cancer. However, the role of p63 in formation and maintenance of bronchial epithelia is largely unknown. The objective of the current study was to determine the expression pattern of the ΔN and TA isoforms of p63 and the role of p63 in the development and maintenance of pseudostratified lung epithelium in situ and in culture. We used a human bronchial epithelial cell line with basal cell characteristics (VA10) to model bronchial epithelium in an air-liquid interface culture (ALI) and performed a lentiviral-based silencing of p63 to characterize the functional and phenotypic consequences of p63 loss. We demonstrate that ΔNp63 is the major isoform in the human lung and its expression was exclusively found in the basal cells lining the basement membrane of the bronchial epithelium. Knockdown of p63 affected proliferation and migration of VA10 cells and facilitated cellular senescence. Expression of p63 is critical for epithelial repair as demonstrated by wound healing assays. Importantly, generation of pseudostratified VA10 epithelium in the ALI setup depended on p63 expression and goblet cell differentiation, which can be induced by IL-13 stimulation, was abolished by the p63 knockdown. After knockdown of p63 in primary bronchial epithelial cells they did not proliferate and showed marked senescence. We conclude that these results strongly implicate p63 in the formation and maintenance of differentiated pseudostratified bronchial epithelium.
Collapse
Affiliation(s)
- Ari Jon Arason
- Stem Cell Research Unit, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Hematology, Landspitali University Hospital, Reykjavik, Iceland
| | | | | | | | - Jon Thor Bergthorsson
- Stem Cell Research Unit, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Saevar Ingthorsson
- Stem Cell Research Unit, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Hematology, Landspitali University Hospital, Reykjavik, Iceland
| | - Olafur Baldursson
- Department of Pulmonary Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Satrajit Sinha
- Department of Biochemistry, Center for Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, United States of America
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Hematology, Landspitali University Hospital, Reykjavik, Iceland
| | - Magnus K. Magnusson
- Stem Cell Research Unit, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Pharmacology & Toxicology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Hematology, Landspitali University Hospital, Reykjavik, Iceland
- * E-mail:
| |
Collapse
|
21
|
Benediktsdóttir BE, Baldursson Ó, Másson M. Challenges in evaluation of chitosan and trimethylated chitosan (TMC) as mucosal permeation enhancers: From synthesis to in vitro application. J Control Release 2014. [DOI: 10.1016/j.jconrel.2013.10.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Benediktsdóttir BE, Gudjónsson T, Baldursson Ó, Másson M. N-alkylation of highly quaternized chitosan derivatives affects the paracellular permeation enhancement in bronchial epithelia in vitro. Eur J Pharm Biopharm 2014; 86:55-63. [DOI: 10.1016/j.ejpb.2013.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/21/2013] [Accepted: 04/05/2013] [Indexed: 10/26/2022]
|
23
|
Walters MS, Gomi K, Ashbridge B, Moore MAS, Arbelaez V, Heldrich J, Ding BS, Rafii S, Staudt MR, Crystal RG. Generation of a human airway epithelium derived basal cell line with multipotent differentiation capacity. Respir Res 2013; 14:135. [PMID: 24298994 PMCID: PMC3907041 DOI: 10.1186/1465-9921-14-135] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/22/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND As the multipotent progenitor population of the airway epithelium, human airway basal cells (BC) replenish the specialized differentiated cell populations of the mucociliated airway epithelium during physiological turnover and repair. Cultured primary BC divide a limited number of times before entering a state of replicative senescence, preventing the establishment of long-term replicating cultures of airway BC that maintain their original phenotype. METHODS To generate an immortalized human airway BC cell line, primary human airway BC obtained by brushing the airway epithelium of healthy nonsmokers were infected with a retrovirus expressing human telomerase (hTERT). The resulting immortalized cell line was then characterized under non-differentiating and differentiating air-liquid interface (ALI) culture conditions using ELISA, TaqMan quantitative PCR, Western analysis, and immunofluorescent and immunohistochemical staining analysis for cell type specific markers. In addition, the ability of the cell line to respond to environmental stimuli under differentiating ALI culture was assessed. RESULTS We successfully generated an immortalized human airway BC cell line termed BCi-NS1 via expression of hTERT. A single cell derived clone from the parental BCi-NS1 cells, BCi-NS1.1, retains characteristics of the original primary cells for over 40 passages and demonstrates a multipotent differentiation capacity into secretory (MUC5AC, MUC5B), goblet (TFF3), Clara (CC10) and ciliated (DNAI1, FOXJ1) cells on ALI culture. The cells can respond to external stimuli such as IL-13, resulting in alteration of the normal differentiation process. CONCLUSION Development of immortalized human airway BC that retain multipotent differentiation capacity over long-term culture should be useful in understanding the biology of BC, the response of BC to environmental stress, and as a target for assessment of pharmacologic agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York NY, USA.
| |
Collapse
|
24
|
Cederlund A, Kai-Larsen Y, Printz G, Yoshio H, Alvelius G, Lagercrantz H, Strömberg R, Jörnvall H, Gudmundsson GH, Agerberth B. Lactose in human breast milk an inducer of innate immunity with implications for a role in intestinal homeostasis. PLoS One 2013; 8:e53876. [PMID: 23326523 PMCID: PMC3542196 DOI: 10.1371/journal.pone.0053876] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/03/2012] [Indexed: 12/12/2022] Open
Abstract
Postpartum, infants have not yet established a fully functional adaptive immune system and are at risk of acquiring infections. Hence, newborns are dependent on the innate immune system with its antimicrobial peptides (AMPs) and proteins expressed at epithelial surfaces. Several factors in breast milk are known to confer immune protection, but which the decisive factors are and through which manner they work is unknown. Here, we isolated an AMP-inducing factor from human milk and identified it by electrospray mass spectrometry and NMR to be lactose. It induces the gene (CAMP) that encodes the only human cathelicidin LL-37 in colonic epithelial cells in a dose- and time-dependent manner. The induction was suppressed by two different p38 antagonists, indicating an effect via the p38-dependent pathway. Lactose also induced CAMP in the colonic epithelial cell line T84 and in THP-1 monocytes and macrophages. It further exhibited a synergistic effect with butyrate and phenylbutyrate on CAMP induction. Together, these results suggest an additional function of lactose in innate immunity by upregulating gastrointestinal AMPs that may lead to protection of the neonatal gut against pathogens and regulation of the microbiota of the infant.
Collapse
Affiliation(s)
- Andreas Cederlund
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ylva Kai-Larsen
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Gordana Printz
- Department of Woman and Child Health, Karolinska University Hospital, Stockholm, Sweden
| | - Hiroyuki Yoshio
- Department of Neonatology, St. Marianna University School of Medicine, Miyamae-ku Sugao, Kawasaki, Japan
| | - Gunvor Alvelius
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hugo Lagercrantz
- Department of Woman and Child Health, Karolinska University Hospital, Stockholm, Sweden
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Hans Jörnvall
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Birgitta Agerberth
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Benediktsdóttir BE, Arason AJ, Halldórsson S, Gudjónsson T, Másson M, Baldursson Ó. Drug Delivery Characteristics of the Progenitor Bronchial Epithelial Cell Line VA10. Pharm Res 2012; 30:781-91. [DOI: 10.1007/s11095-012-0919-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/18/2012] [Indexed: 11/28/2022]
|
26
|
Regioselective fluorescent labeling of N,N,N-trimethyl chitosan via oxime formation. Carbohydr Polym 2012; 90:1273-80. [DOI: 10.1016/j.carbpol.2012.06.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/14/2012] [Accepted: 06/23/2012] [Indexed: 11/23/2022]
|
27
|
Innate immune mediator profiles and their regulation in a novel polarized immortalized epithelial cell model derived from human endocervix. J Reprod Immunol 2011; 92:8-20. [PMID: 21943934 DOI: 10.1016/j.jri.2011.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/03/2011] [Accepted: 08/05/2011] [Indexed: 01/01/2023]
Abstract
The endocervix in the female reproductive tract (FRT) is susceptible to sexually transmitted pathogens such as Chlamydia trachomatis and Neisseria gonorrhoeae. Endocervical epithelial cells in vivo make innate immune mediators that likely aid in the protection from these pathogens. In vitro studies to investigate the innate epithelial cell immune response to endocervical pathogens have been hindered by the paucity of human endocervix-derived epithelial cell lines that display the differentiation proteins and functional characteristics of their site of origin. We have established an immortalized epithelial cell line (A2EN) derived from an endocervical tissue explant that can be polarized to exhibit distinct apical and basolateral membrane domains. Polarized A2EN cells secrete mucus at their apical surface, and express MUC5B, a mucin specific to the endocervix. Polarized A2EN cells also express hormone receptors that respond appropriately to female steroid hormones. Polarized A2EN cells can be stimulated with the toll-like receptor 3 agonist, polyI:C, to express anti-microbial peptides (AMPs) as well as pro-inflammatory cytokines and chemokines. Cytokines and chemokines are also differentially secreted depending on the hormone milieu in which the cells are exposed. We conclude that polarized A2EN cells maintain distinctive phenotypic and functional characteristics of the epithelial cells found in the endocervix and, hence, could provide a useful, new in vitro model system for investigations on the role of endogenous and exogenous factors that regulate endocervical epithelial cell immunity including studies on sexually transmitted infections and topical microbicides.
Collapse
|
28
|
Franzdóttir SR, Axelsson IT, Arason AJ, Baldursson O, Gudjonsson T, Magnusson MK. Airway branching morphogenesis in three dimensional culture. Respir Res 2010; 11:162. [PMID: 21108827 PMCID: PMC3002372 DOI: 10.1186/1465-9921-11-162] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 11/25/2010] [Indexed: 11/26/2022] Open
Abstract
Background Lungs develop from the fetal digestive tract where epithelium invades the vascular rich stroma in a process called branching morphogenesis. In organogenesis, endothelial cells have been shown to be important for morphogenesis and the maintenance of organ structure. The aim of this study was to recapitulate human lung morphogenesis in vitro by establishing a three dimensional (3D) co-culture model where lung epithelial cells were cultured in endothelial-rich stroma. Methods We used a human bronchial epithelial cell line (VA10) recently developed in our laboratory. This cell line cell line maintains a predominant basal cell phenotype, expressing p63 and other basal markers such as cytokeratin-5 and -14. Here, we cultured VA10 with human umbilical vein endothelial cells (HUVECs), to mimic the close interaction between these cell types during lung development. Morphogenesis and differentiation was monitored by phase contrast microscopy, immunostainings and confocal imaging. Results We found that in co-culture with endothelial cells, the VA10 cells generated bronchioalveolar like structures, suggesting that lung epithelial branching is facilitated by the presence of endothelial cells. The VA10 derived epithelial structures display various complex patterns of branching and show partial alveolar type-II differentiation with pro-Surfactant-C expression. The epithelial origin of the branching VA10 colonies was confirmed by immunostaining. These bronchioalveolar-like structures were polarized with respect to integrin expression at the cell-matrix interface. The endothelial-induced branching was mediated by soluble factors. Furthermore, fibroblast growth factor receptor-2 (FGFR-2) and sprouty-2 were expressed at the growing tips of the branching structures and the branching was inhibited by the FGFR-small molecule inhibitor SU5402. Discussion In this study we show that a human lung epithelial cell line can be induced by endothelial cells to form branching bronchioalveolar-like structures in 3-D culture. This novel model of human airway morphogenesis can be used to study critical events in human lung development and suggests a supportive role for the endothelium in promoting branching of airway epithelium.
Collapse
Affiliation(s)
- Sigrídur R Franzdóttir
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Antimicrobial peptides (AMPs) are important components of our first line of defense. Induction of AMPs such as LL-37 of the cathelicidin family might provide a novel approach in treating bacterial infections. In this study we identified 4-phenylbutyrate (PBA) as a novel inducer of AMP expression and investigated affected regulatory pathways. We treated various cell lines with PBA and assessed mRNA expression by real-time reverse transcriptase PCR (RT-PCR). Cathelicidin AMP (CAMP) gene expression was found to be upregulated in all four cell lines tested. Additionally, we found that the beta-defensin 1 gene was upregulated in the lung epithelial cell line VA10 while being downregulated in the monocytic cell line U937. Further we found that PBA induced CAMP gene expression synergistically with 1,25-dihydroxyvitamin D(3) at both protein and mRNA levels. The general mechanism of induction of CAMP gene expression by PBA was found to be dependent on protein synthesis. Results from quantitative chromatin immunoprecipitation experiments challenge the common view that histone deacetylase inhibitors directly increase CAMP gene expression. Furthermore, we have demonstrated that inhibition of the mitogen-activated protein kinases MEK1/2 and c-Jun N-terminal kinase attenuate PBA-induced CAMP gene expression. Similarly, alpha-methylhydrocinnamate (ST7), an analogue of PBA, increases CAMP gene expression. Our findings contribute to understanding of the regulation of AMP expression and suggest that PBA and/or ST7 is a promising drug candidate for treatment of microbial infections by strengthening the epithelial antimicrobial barriers.
Collapse
|
30
|
KUROISHI S, SUDA T, FUJISAWA T, IDE K, INUI N, NAKAMURA Y, NAKAMURA H, CHIDA K. Epithelial-mesenchymal transition induced by transforming growth factor-β1 in mouse tracheal epithelial cells. Respirology 2009; 14:828-37. [DOI: 10.1111/j.1440-1843.2009.01561.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Halldorsson S, Gudjonsson T, Gottfredsson M, Singh PK, Gudmundsson GH, Baldursson O. Azithromycin maintains airway epithelial integrity during Pseudomonas aeruginosa infection. Am J Respir Cell Mol Biol 2009; 42:62-8. [PMID: 19372247 DOI: 10.1165/rcmb.2008-0357oc] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Tight junctions (TJs) play a key role in maintaining bronchial epithelial integrity, including apical-basolateral polarity and paracellular trafficking. Patients with chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) often suffer from chronic infections by the opportunistic Gram-negative bacterium Pseudomonas aeruginosa, which produces multiple virulence factors, including rhamnolipids. The macrolide antibiotic azithromycin (azm) has been shown to improve lung function in patients with CF without reducing the bacterial count within the lung. However, the mechanism of this effect is still debated. It has previously been shown that azm increased transepithelial electrical resistance (TER) in a bronchial epithelial cell line. In this study we used an air-liquid interface model of human airway epithelia and measured TER, changes in TJ expression and architecture after exposure to live P. aeruginosa PAO1, and PAO1-Deltarhl which is a PAO1 mutant lacking rhlA and rhlB, which encode key enzymes for rhamnolipid production. In addition, the cells were challenged with bacterial culture medium conditioned by these strains, purified rhamnolipids, or synthetic 3O-C(12)-HSL. Virulence factors secreted by P. aeruginosa reduced TER and caused TJ rearrangement in the bronchial epithelium, exposing the epithelium to further bacterial infiltration. Pretreatment of the bronchial epithelium with azm attenuated this effect and facilitated epithelial recovery. These data suggest that azm protects the bronchial epithelium during P. aeruginosa infection independent of antimicrobial activity, and could explain in part the beneficial results seen in clinical trials of patients with CF.
Collapse
Affiliation(s)
- Skarphedinn Halldorsson
- Institute of Biology, Biomedical Center, University of Iceland, Landspitali, Eiriksgata 5, Reykjavik, Iceland
| | | | | | | | | | | |
Collapse
|