1
|
Hu T, Chang S, Qi F, Zhang Z, Chen J, Jiang L, Wang D, Deng C, Nie K, Xu G, Wei Z. Neural grafts containing exosomes derived from Schwann cell-like cells promote peripheral nerve regeneration in rats. BURNS & TRAUMA 2023; 11:tkad013. [PMID: 37122841 PMCID: PMC10141455 DOI: 10.1093/burnst/tkad013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/06/2022] [Accepted: 03/02/2023] [Indexed: 05/02/2023]
Abstract
Background Schwann cell-like cells (SCLCs), differentiated from mesenchymal stem cells, have shown promising outcomes in the treatment of peripheral nerve injuries in preclinical studies. However, certain clinical obstacles limit their application. Hence, the primary aim of this study was to investigate the role of exosomes derived from SCLCs (SCLCs-exo) in peripheral nerve regeneration. Methods SCLCs were differentiated from human amniotic mesenchymal stem cells (hAMSCs) in vitro and validated by immunofluorescence, real-time quantitative PCR and western blot analysis. Exosomes derived from hAMSCs (hAMSCs-exo) and SCLCs were isolated by ultracentrifugation and validated by nanoparticle tracking analysis, WB analysis and electron microscopy. A prefabricated nerve graft was used to deliver hAMSCs-exo or SCLCs-exo in an injured sciatic nerve rat model. The effects of hAMSCs-exo or SCLCs-exo on rat peripheral nerve injury (PNI) regeneration were determined based on the recovery of neurological function and histomorphometric variation. The effects of hAMSCs-exo or SCLCs-exo on Schwann cells were also determined via cell proliferation and migration assessment. Results SCLCs significantly expressed the Schwann cell markers glial fibrillary acidic protein and S100. Compared to hAMSCs-exo, SCLCs-exo significantly enhanced motor function recovery, attenuated gastrocnemius muscle atrophy and facilitated axonal regrowth, myelin formation and angiogenesis in the rat model. Furthermore, hAMSCs-exo and SCLCs-exo were efficiently absorbed by Schwann cells. However, compared to hAMSCs-exo, SCLCs-exo significantly promoted the proliferation and migration of Schwann cells. SCLCs-exo also significantly upregulated the expression of a glial cell-derived neurotrophic factor, myelin positive regulators (SRY-box transcription factor 10, early growth response protein 2 and organic cation/carnitine transporter 6) and myelin proteins (myelin basic protein and myelin protein zero) in Schwann cells. Conclusions These findings suggest that SCLCs-exo can more efficiently promote PNI regeneration than hAMSCs-exo and are a potentially novel therapeutic approach for treating PNI.
Collapse
Affiliation(s)
| | | | - Fang Qi
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563003, China
| | - Zhonghui Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563003, China
| | - Jiayin Chen
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563003, China
| | - Lingli Jiang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563003, China
| | - Dali Wang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563003, China
| | - Chengliang Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563003, China
| | - Kaiyu Nie
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563003, China
| | | | - Zairong Wei
- Correspondence. Guangchao Xu, ; Zairong Wei,
| |
Collapse
|
2
|
Chen W, Ji L, Wei Z, Yang C, Chang S, Zhang Y, Nie K, Jiang L, Deng Y. miR-146a-3p suppressed the differentiation of hAMSCs into Schwann cells via inhibiting the expression of ERBB2. Cell Tissue Res 2021; 384:99-112. [PMID: 33447879 PMCID: PMC8016804 DOI: 10.1007/s00441-020-03320-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Human amniotic mesenchymal stem cells (hAMSCs) can be differentiated into Schwann-cell-like cells (SCLCs) in vitro. However, the underlying mechanism of cell differentiation remains unclear. In this study, we explored the phenotype and multipotency of hAMSCs, which were differentiated into SCLCs, and the expression of nerve repair-related Schwann markers, such as S100 calcium binding protein B (S-100), TNF receptor superfamily member 1B (P75), and glial fibrillary acidic protein (GFAP) were observed to be significantly increased. The secreted functional neurotrophic factors, like brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3), were determined and also increased with the differentiation time. Moreover, miR-146a-3p, which significantly decreased during the differentiation of hAMSCs into SCLCs, was selected by miRNA-sequence analysis. Further molecular mechanism studies showed that Erb-B2 receptor tyrosine kinase 2 (ERBB2) was an effective target of miR-146a-3p and that miR-146a-3p down-regulated ERBB2 expression by binding to the 3'-UTR of ERBB2. The expression of miR-146a-3p markedly decreased, while the mRNA levels of ERBB2 increased with the differentiation time. The results showed that down-regulating miR-146a-3p could promote SC lineage differentiation and suggested that miR-146a-3p negatively regulated the Schwann-like phenotype differentiation of hAMSCs by targeting ERBB2. The results will be helpful to establish a deeper understanding of the underlying mechanisms and find novel strategies for cell therapy.
Collapse
Affiliation(s)
- Wei Chen
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical College, 149 Dalian Road, Guizhou, Zunyi, China
| | - Linlin Ji
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical College, 149 Dalian Road, Guizhou, Zunyi, China
| | - Zairong Wei
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical College, 149 Dalian Road, Guizhou, Zunyi, China.
| | - Chenglan Yang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical College, 149 Dalian Road, Guizhou, Zunyi, China
| | - Shusen Chang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical College, 149 Dalian Road, Guizhou, Zunyi, China
| | - Yucheng Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical College, 149 Dalian Road, Guizhou, Zunyi, China
| | - Kaiyu Nie
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical College, 149 Dalian Road, Guizhou, Zunyi, China
| | - Lingli Jiang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical College, 149 Dalian Road, Guizhou, Zunyi, China
| | - Yurong Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical College, 149 Dalian Road, Guizhou, Zunyi, China
| |
Collapse
|
3
|
Ramli K, Aminath Gasim I, Ahmad AA, Hassan S, Law ZK, Tan GC, Baharuddin A, Naicker AS, Htwe O, Mohammed Haflah NH, B H Idrus R, Abdullah S, Ng MH. Human bone marrow-derived MSCs spontaneously express specific Schwann cell markers. Cell Biol Int 2019; 43:233-252. [PMID: 30362196 DOI: 10.1002/cbin.11067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/07/2018] [Indexed: 12/15/2022]
Abstract
In peripheral nerve injuries, Schwann cells (SC) play pivotal roles in regenerating damaged nerve. However, the use of SC in clinical cell-based therapy is hampered due to its limited availability. In this study, we aim to evaluate the effectiveness of using an established induction protocol for human bone marrow derived-MSC (hBM-MSCs) transdifferentiation into a SC lineage. A relatively homogenous culture of hBM-MSCs was first established after serial passaging (P3), with profiles conforming to the minimal criteria set by International Society for Cellular Therapy (ISCT). The cultures (n = 3) were then subjected to a series of induction media containing β-mercaptoethanol, retinoic acid, and growth factors. Quantitative RT-PCR, flow cytometry, and immunocytochemistry analyses were performed to quantify the expression of specific SC markers, that is, S100, GFAP, MPZ and p75 NGFR, in both undifferentiated and transdifferentiated hBM-MSCs. Based on these analyses, all markers were expressed in undifferentiated hBM-MSCs and MPZ expression (mRNA transcripts) was consistently detected before and after transdifferentiation across all samples. There was upregulation at the transcript level of more than twofolds for NGF, MPB, GDNF, p75 NGFR post-transdifferentiation. This study highlights the existence of spontaneous expression of specific SC markers in cultured hBM-MSCs, inter-donor variability and that MSC transdifferentiation is a heterogenous process. These findings strongly oppose the use of a single marker to indicate SC fate. The heterogenous nature of MSC may influence the efficiency of SC transdifferentiation protocols. Therefore, there is an urgent need to re-define the MSC subpopulations and revise the minimal criteria for MSC identification.
Collapse
Affiliation(s)
- Khairunnisa Ramli
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ifasha Aminath Gasim
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amir Adham Ahmad
- Department of Orthopaedics, School of Medicine, International Medical University, Negeri Sembilan, Malaysia
| | - Shariful Hassan
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Zhe Kang Law
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Azmi Baharuddin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amaramalar Selvi Naicker
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ohnmar Htwe
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Hazla Mohammed Haflah
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ruszymah B H Idrus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shalimar Abdullah
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Li Y, Yu Z, Men Y, Chen X, Wang B. Laminin-chitosan-PLGA conduit co-transplanted with Schwann and neural stem cells to repair the injured recurrent laryngeal nerve. Exp Ther Med 2018; 16:1250-1258. [PMID: 30116376 PMCID: PMC6090254 DOI: 10.3892/etm.2018.6343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/10/2017] [Indexed: 12/23/2022] Open
Abstract
The aim of the present study was to assess the possibility and efficacy of utilizing a laminin-chitosan-poly (lactic-co-glycolic acid), otherwise known as laminin-chitosan-PLGA, nerve conduit with the co-transplantation of Schwann and neural stem cells to repair peripheral nerve defects. Previous in vitro experiments have demonstrated that the three-dimensional structure of the built in fiber filament electrospinning of laminin-chitosan-PLGA nerve conduit is beneficial to the migration and regeneration of nerve cells, and has notable mechanical strength and plasticity. It is able to provide support in the neural tissue regeneration process, and has the ability to degrade itself once peripheral nerves complete their regeneration, providing more advantages than other biological and synthetic materials. In the present study, 132 female Sprague Dawley rats were used to establish an animal model of laryngeal nerve injury, and the rats were randomly divided into six groups for experimentation. The nerve conduit was prepared and co-cultured with Schwann and neural stem cells, and micro-surgical techniques were used to repair the 5-mm-long recurrent laryngeal nerve injuries. Functional and histological assessments were performed at 8 and 12 weeks post-surgery, respectively. The results revealed that the laminin-chitosan-PLGA nerve conduit combined with Schwann and neural stem cells was able to promote nerve regeneration (P<0.05), and its effect was superior to those of the autograft (P<0.05). The results of the present study suggest that this is the ideal method for repairing peripheral nerve defects, and cells in the graft may promote nerve regeneration.
Collapse
Affiliation(s)
- Yu Li
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200000, P.R. China
| | - Ziwei Yu
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200000, P.R. China
| | - Yongzhi Men
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200000, P.R. China
| | - Xinwei Chen
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200000, P.R. China
| | - Baoxin Wang
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200000, P.R. China
| |
Collapse
|
5
|
Su CF, Chang LH, Kao CY, Lee DC, Cho KH, Kuo LW, Chang H, Wang YH, Chiu IM. Application of amniotic fluid stem cells in repairing sciatic nerve injury in minipigs. Brain Res 2018; 1678:397-406. [DOI: 10.1016/j.brainres.2017.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/23/2017] [Accepted: 11/12/2017] [Indexed: 01/10/2023]
|
6
|
Sakaue M, Sieber-Blum M. Human epidermal neural crest stem cells as a source of Schwann cells. Development 2015; 142:3188-97. [PMID: 26251357 PMCID: PMC4582175 DOI: 10.1242/dev.123034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/22/2015] [Indexed: 12/16/2022]
Abstract
We show that highly pure populations of human Schwann cells can be derived rapidly and in a straightforward way, without the need for genetic manipulation, from human epidermal neural crest stem cells [hEPI-NCSC(s)] present in the bulge of hair follicles. These human Schwann cells promise to be a useful tool for cell-based therapies, disease modelling and drug discovery. Schwann cells are glia that support axons of peripheral nerves and are direct descendants of the embryonic neural crest. Peripheral nerves are damaged in various conditions, including through trauma or tumour-related surgery, and Schwann cells are required for their repair and regeneration. Schwann cells also promise to be useful for treating spinal cord injuries. Ex vivo expansion of hEPI-NCSC isolated from hair bulge explants, manipulating the WNT, sonic hedgehog and TGFβ signalling pathways, and exposure of the cells to pertinent growth factors led to the expression of the Schwann cell markers SOX10, KROX20 (EGR2), p75NTR (NGFR), MBP and S100B by day 4 in virtually all cells, and maturation was completed by 2 weeks of differentiation. Gene expression profiling demonstrated expression of transcripts for neurotrophic and angiogenic factors, as well as JUN, all of which are essential for nerve regeneration. Co-culture of hEPI-NCSC-derived human Schwann cells with rodent dorsal root ganglia showed interaction of the Schwann cells with axons, providing evidence of Schwann cell functionality. We conclude that hEPI-NCSCs are a biologically relevant source for generating large and highly pure populations of human Schwann cells. Summary: Human epidermal neural crest stem cells isolated from the bulge of hair follicles are used to derive Schwann cells that could be useful for regenerative therapies, disease modelling and drug discovery.
Collapse
Affiliation(s)
- Motoharu Sakaue
- Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Maya Sieber-Blum
- Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
7
|
Wakao S, Matsuse D, Dezawa M. Mesenchymal stem cells as a source of Schwann cells: their anticipated use in peripheral nerve regeneration. Cells Tissues Organs 2015; 200:31-41. [PMID: 25765009 DOI: 10.1159/000368188] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2014] [Indexed: 11/19/2022] Open
Abstract
Schwann cells form myelin, sustain axons and provide the microenvironment for nerve fibers, thereby playing a key role in the peripheral nervous system (PNS). Schwann cells also provide support for the damaged PNS by producing factors that strongly promote axonal regrowth and contribute to remyelination, which is crucial for the recovery of neural function. These advantages are not confined to the PNS and also apply to the central nervous system. Many diseases, including peripheral nerve injury, neuropathy, multiple sclerosis and spinal cord injury, are targets for Schwann cell therapy. The collection of Schwann cells, however, causes new damage to other peripheral nerve segments. Furthermore, the doubling time of Schwann cells is not very fast, and thus adequate amounts of Schwann cells for clinical use cannot be collected within a reasonable amount of time. Mesenchymal stem cells, which are highly proliferative, are easily accessible from various types of mesenchymal tissues, such as the bone marrow, umbilical cord and fat tissue. Because these cells have the ability to cross oligolineage boundaries between mesodermal to ectodermal lineages, they are capable of differentiating into Schwann cells with step-by-step cytokine stimulation. In this review, we summarize the properties of mesenchymal stem cell-derived Schwann cells, which are comparable to authentic Schwann cells, and discuss future perspectives.
Collapse
Affiliation(s)
- Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | |
Collapse
|
8
|
Taran R, Mamidi MK, Singh G, Dutta S, Parhar IS, John JP, Bhonde R, Pal R, Das AK. In vitro and in vivo neurogenic potential of mesenchymal stem cells isolated from different sources. J Biosci 2014; 39:157-69. [PMID: 24499800 DOI: 10.1007/s12038-013-9409-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regenerative medicine is an evolving interdisciplinary topic of research involving numerous technological methods that utilize stem cells to repair damaged tissues. Particularly, mesenchymal stem cells (MSCs) are a great tool in regenerative medicine because of their lack of tumorogenicity, immunogenicity and ability to perform immunomodulatory as well as anti-inflammatory functions. Numerous studies have investigated the role of MSCs in tissue repair and modulation of allogeneic immune responses. MSCs derived from different sources hold unique regenerative potential as they are self-renewing and can differentiate into chondrocytes, osteoblasts, adipocytes, cardiomyocytes, hepatocytes, endothelial and neuronal cells, among which neuronal-like cells have gained special interest. MSCs also have the ability to secrete multiple bioactive molecules capable of stimulating recovery of injured cells and inhibiting inflammation. In this review we focus on neural differentiation potential of MSCs isolated from different sources and how certain growth factors/small molecules can be used to derive neuronal phenotypes from MSCs. We also discuss the efficacy of MSCs when transplanted in vivo and how they can generate certain neurons and lead to relief or recovery of the diseased condition. Furthermore, we have tried to evaluate the appropriatemerits of different sources ofMSCs with respect to their propensity towards neurological differentiation as well as their effectiveness in preclinical studies.
Collapse
Affiliation(s)
- Ramyani Taran
- Manipal Institute of Regenerative Medicine, Manipal University Branch Campus, Bangalore, India
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Da Sacco S, De Filippo RE, Perin L. Amniotic fluid as a source of pluripotent and multipotent stem cells for organ regeneration. Curr Opin Organ Transplant 2013; 16:101-5. [PMID: 21157345 DOI: 10.1097/mot.0b013e3283424f6e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Amniotic fluid, due to its contact to the fetus during development, is considered an important diagnostic tool to evaluate the health status of the fetus during pregnancy. However, amniotic fluid also contains a heterogeneous cellular population that can be safely collected by amniocentesis and easily cultured. Many different cell types have been found within amniotic fluid and currently some of them are being tested for their possible use for cellular therapy. RECENT FINDINGS Potential of pluripotent and multipotent cells isolated from the amniotic fluid has been tested and in-vitro differentiations toward various cell types have been successfully performed. Furthermore, in-vivo studies are highlighting the benefits and mechanisms of amniotic fluid cells for therapy, with particular focus on kidney and lung diseases. SUMMARY Amniotic fluid may represent a precious source for easily and safely retrievable cell types that may be used for regenerative medicine purposes.
Collapse
Affiliation(s)
- Stefano Da Sacco
- Division of Urology, Keck School of Medicine, Saban Research Institute, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, California 90027, USA
| | | | | |
Collapse
|
10
|
Widera D, Hauser S, Kaltschmidt C, Kaltschmidt B. Origin and regenerative potential of vertebrate mechanoreceptor-associated stem cells. ANATOMY RESEARCH INTERNATIONAL 2012; 2012:837626. [PMID: 23082250 PMCID: PMC3467754 DOI: 10.1155/2012/837626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/04/2012] [Indexed: 01/02/2023]
Abstract
Meissner corpuscles and Merkel cell neurite complexes are highly specialized mechanoreceptors present in the hairy and glabrous skin, as well as in different types of mucosa. Several reports suggest that after injury, such as after nerve crush, freeze injury, or dissection of the nerve, they are able to regenerate, particularly including reinnervation and repopulation of the mechanoreceptors by Schwann cells. However, little is known about mammalian cells responsible for these regenerative processes. Here we review cellular origin of this plasticity in the light of newly described adult neural crest-derived stem cell populations. We also discuss further potential multipotent stem cell populations with the ability to regenerate disrupted innervation and to functionally recover the mechanoreceptors. These capabilities are discussed as in context to cellularly reprogrammed Schwann cells and tissue resident adult mesenchymal stem cells.
Collapse
Affiliation(s)
- Darius Widera
- Department of Cell Biology, University of Bielefeld, Universitätsstraße 25, 33501 Bielefeld, Germany
| | - Stefan Hauser
- Department of Molecular Neurobiology, University of Bielefeld, Universitätsstraße 25, 33501 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstraße 25, 33501 Bielefeld, Germany
| | - Barbara Kaltschmidt
- Department of Molecular Neurobiology, University of Bielefeld, Universitätsstraße 25, 33501 Bielefeld, Germany
| |
Collapse
|
11
|
Cananzi M, De Coppi P. CD117(+) amniotic fluid stem cells: state of the art and future perspectives. Organogenesis 2012; 8:77-88. [PMID: 23037870 DOI: 10.4161/org.22426] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Broadly multipotent stem cells can be isolated from amniotic fluid by selection for the expression of the membrane stem cell factor receptor c-Kit, a common marker for multipotential stem cells. They have clonogenic capability and can be directed into a wide range of cell types representing the three primary embryonic lineages. Amniotic fluid stem cells maintained for over 250 population doublings retained long telomeres and a normal karyotype. Clonal human lines verified by retroviral marking were induced to differentiate into cell types representing each embryonic germ layer, including cells of adipogenic, osteogenic, myogenic, endothelial, neuronal and hepatic lineages. AFS cells could be differentiate toward cardiomyogenic lineages, when co-cultured with neonatal cardiomyocytes, and have the potential to generate myogenic and hematopoietic lineages both in vitro and in vivo. Very recently first trimester AFS cells could be reprogrammed without any genetic manipulation opening new possibilities in the field of fetal/neonatal therapy and disease modeling. In this review we are aiming to summarize the knowledge on amniotic fluid stem cells and highlight the most promising results.
Collapse
Affiliation(s)
- Mara Cananzi
- Department of Paediatric Surgery, UCL Institute of Child Health & Great Ormond Street Hospital, London, UK
| | | |
Collapse
|