1
|
Wei S, Yang B, Bi T, Zhang W, Sun H, Cui Y, Li G, Zhang A. Tracheal replacement with aortic grafts: Bench to clinical practice. Regen Ther 2023; 24:434-442. [PMID: 37744679 PMCID: PMC10514392 DOI: 10.1016/j.reth.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/26/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023] Open
Abstract
Tracheal reconstruction following extensive resection for malignant or benign lesions remains a major challenge in thoracic surgery. Numerous studies have attempted to identify the optimal tracheal replacement with different biological or prosthetic materials, such as various homologous and autologous tissues, with no encouraging outcomes. Recently, a few clinical studies reported attaining favorable outcomes using in vitro or stem cell-based airway engineering and also with tracheal allograft implantation following heterotopic revascularization. However, none of the relevant studies offered a standardized technology for airway replacement. In 1997, a novel approach to airway reconstruction was proposed, which involved using aortic grafts as the biological matrix. Studies on animal models reported achieving in-vivo cartilage and epithelial regeneration using this approach. These encouraging results inspired the subsequent application of cryopreserved aortic allografts in humans for the first time. Cryopreserved aortic allografts offered further advantages, such as easy availability in tissue banks and no requirement for immunosuppressive treatments. Currently, stented aortic matrix-based airway replacement has emerged as a standard approach, and its effectiveness was also verified in the recently reported TRITON-01 study. In this context, the present review aims to summarize the current status of the application of aortic grafts in tracheal replacement, including the latest advancements in experimental and clinical practice.
Collapse
Affiliation(s)
- Shixiong Wei
- The Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
- The Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - Bo Yang
- The Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - Taiyu Bi
- The Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - Wenyu Zhang
- The Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - He Sun
- The Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - Yongsheng Cui
- The Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - Guanghu Li
- The Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - Anling Zhang
- The Department of Maxillofacial Surgery, Jilin FAW General Hospital, Changchun, Jilin Province, 130000, China
| |
Collapse
|
2
|
Saksena R, Gao C, Wicox M, de Mel A. Tubular organ epithelialisation. J Tissue Eng 2016; 7:2041731416683950. [PMID: 28228931 PMCID: PMC5308438 DOI: 10.1177/2041731416683950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 12/11/2022] Open
Abstract
Hollow, tubular organs including oesophagus, trachea, stomach, intestine, bladder and urethra may require repair or replacement due to disease. Current treatment is considered an unmet clinical need, and tissue engineering strategies aim to overcome these by fabricating synthetic constructs as tissue replacements. Smart, functionalised synthetic materials can act as a scaffold base of an organ and multiple cell types, including stem cells can be used to repopulate these scaffolds to replace or repair the damaged or diseased organs. Epithelial cells have not yet completely shown to have efficacious cell-scaffold interactions or good functionality in artificial organs, thus limiting the success of tissue-engineered grafts. Epithelial cells play an essential part of respective organs to maintain their function. Without successful epithelialisation, hollow organs are liable to stenosis, collapse, extensive fibrosis and infection that limit patency. It is clear that the source of cells and physicochemical properties of scaffolds determine the successful epithelialisation. This article presents a review of tissue engineering studies on oesophagus, trachea, stomach, small intestine, bladder and urethral constructs conducted to actualise epithelialised grafts.
Collapse
Affiliation(s)
- Rhea Saksena
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Chuanyu Gao
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Mathew Wicox
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Achala de Mel
- Division of Surgery and Interventional Science, University College London, London, UK
| |
Collapse
|
3
|
Paz AC, Soleas J, Poon JC, Trieu D, Waddell TK, McGuigan AP. Challenges and Opportunities for Tissue-Engineering Polarized Epithelium. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:56-72. [DOI: 10.1089/ten.teb.2013.0144] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ana C. Paz
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - John Soleas
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - James C.H. Poon
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Dennis Trieu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Thomas K. Waddell
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Alison P. McGuigan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|