1
|
Shi LY, Wang Y, Yang YJ, Li Q, Yang ZX, Sun LH, Luo FQ, He YH, Zhang SP, Su N, Liu JQ, He Y, Guan YC, Wei ZL, Cao YX, Zhang D. NLRP4E regulates actin cap formation through SRC and CDC42 during oocyte meiosis. Cell Mol Biol Lett 2024; 29:68. [PMID: 38730334 PMCID: PMC11088158 DOI: 10.1186/s11658-024-00580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Members of the nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing (NLRP) family regulate various physiological and pathological processes. However, none have been shown to regulate actin cap formation or spindle translocation during the asymmetric division of oocyte meiosis I. NLRP4E has been reported as a candidate protein in female fertility, but its function is unknown. METHODS Immunofluorescence, reverse transcription polymerase chain reaction (RT-PCR), and western blotting were employed to examine the localization and expression levels of NLRP4E and related proteins in mouse oocytes. small interfering RNA (siRNA) and antibody transfection were used to knock down NLRP4E and other proteins. Immunoprecipitation (IP)-mass spectrometry was used to identify the potential proteins interacting with NLRP4E. Coimmunoprecipitation (Co-IP) was used to verify the protein interactions. Wild type (WT) or mutant NLRP4E messenger RNA (mRNA) was injected into oocytes for rescue experiments. In vitro phosphorylation was employed to examine the activation of steroid receptor coactivator (SRC) by NLRP4E. RESULTS NLRP4E was more predominant within oocytes compared with other NLRP4 members. NLRP4E knockdown significantly inhibited actin cap formation and spindle translocation toward the cap region, resulting in the failure of polar body extrusion at the end of meiosis I. Mechanistically, GRIN1, and GANO1 activated NLRP4E by phosphorylation at Ser429 and Thr430; p-NLRP4E is translocated and is accumulated in the actin cap region during spindle translocation. Next, we found that p-NLRP4E directly phosphorylated SRC at Tyr418, while p-SRC negatively regulated p-CDC42-S71, an inactive form of CDC42 that promotes actin cap formation and spindle translocation in the GTP-bound form. CONCLUSIONS NLRP4E activated by GRIN1 and GANO1 regulates actin cap formation and spindle translocation toward the cap region through upregulation of p-SRC-Tyr418 and downregulation of p-CDC42-S71 during meiosis I.
Collapse
Affiliation(s)
- Li-Ya Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Reproductive Medicine Center, Shanghai East Hospital, Tongji University School of Medicine, 551 Pudong South Road, Shanghai, 200120, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- State Key Lab of Reproductive Medicine, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China
| | - Yang Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- State Key Lab of Reproductive Medicine, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China
| | - Yan-Jie Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- State Key Lab of Reproductive Medicine, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China
| | - Qian Li
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 123 Tianfei Lane, Nanjing, 210018, China
| | - Zhi-Xia Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Li-Hua Sun
- Reproductive Medicine Center, Shanghai East Hospital, Tongji University School of Medicine, 551 Pudong South Road, Shanghai, 200120, China
| | - Fu-Qiang Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yu-Hao He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- State Key Lab of Reproductive Medicine, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China
| | - Shu-Ping Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- State Key Lab of Reproductive Medicine, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China
| | - Ning Su
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- State Key Lab of Reproductive Medicine, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China
| | - Jia-Qi Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- State Key Lab of Reproductive Medicine, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China
| | - Ye He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yi-Chun Guan
- Center for Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, 7 Rehabilitation Front Street, Zhengzhou, 450000, Henan, China.
| | - Zhao-Lian Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yun-Xia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Dong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- State Key Lab of Reproductive Medicine, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
2
|
Castille J, Thépot D, Fouchécourt S, Dalbies-Tran R, Passet B, Daniel-Carlier N, Vilotte JL, Monget P. The paralogs' enigma of germ-cell specific genes dispensable for fertility: the case of 19 oogenesin genes†. Biol Reprod 2023; 109:408-414. [PMID: 37561421 DOI: 10.1093/biolre/ioad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
Gene knockout experiments have shown that many genes are dispensable for a given biological function. In this review, we make an assessment of male and female germ cell-specific genes dispensable for the function of reproduction in mice, the inactivation of which does not affect fertility. In particular, we describe the deletion of a 1 Mb block containing nineteen paralogous genes of the oogenesin/Pramel family specifically expressed in female and/or male germ cells, which has no consequences in both sexes. We discuss this notion of dispensability and the experiments that need to be carried out to definitively conclude that a gene is dispensable for a function.
Collapse
Affiliation(s)
- Johan Castille
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | | | | | - Bruno Passet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | - Jean-Luc Vilotte
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Philippe Monget
- PRC INRAE, CNRS, IFCE, Université de Tours, Nouzilly, France
| |
Collapse
|
3
|
Guan Y, Gu Y, Li H, Liang B, Han C, Zhang Y, Liu Q, Wei W, Ma Y. NLRP3 inflammasome activation mechanism and its role in autoimmune liver disease. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1577-1586. [PMID: 36148948 PMCID: PMC9828325 DOI: 10.3724/abbs.2022137] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The NLRP3 inflammasome is a multiprotein binding compound comprising NLRP3, connector protein ASC, and effector protein pro-caspase-1. When the NLRP3 inflammasome senses a danger signal from the host or pathogen, activated caspase-1 cleaves the precursors of interleukin (IL)-1β and IL-18 into mature proinflammatory cytokines, simultaneously causing lysis via the pore-forming protein gasdermin D. This induction of cell inflammatory pyroptosis suggests that it is a key process in the innate immune response to pathogens or cellular stress. Recent studies have shown that NLRP3 inflammasome also plays an important role in regulating autoimmune liver diseases, including autoimmune hepatitis, primary biliary cholangitis, and primary sclerosclerotic cholangitis. In this review, we summarize the structure, activation and modulation of the NLRP3 inflammasome, highlight the progress in research on the role of NLRP3 inflammasome in the occurrence and development of autoimmune liver diseases, and discuss potential strategies for targeting the NLRP3 inflammasome in the treatment of autoimmune liver diseases.
Collapse
Affiliation(s)
- Yanling Guan
- Institute of Clinical PharmacologyAnhui Medical UniversityKey Laboratory of Anti-inflammatory and Immune MedicineMinistry of EducationAnhui Collaborative Innovation Center of Anti-inflammatory and Immune MedicineCenter of Rheumatoid Arthritis of Anhui Medical UniversityHefei230032China
| | - Yiyue Gu
- Department of Cardiologythe First People’s Hospital of XuzhouXuzhou221000China
| | - Hao Li
- Institute of Clinical PharmacologyAnhui Medical UniversityKey Laboratory of Anti-inflammatory and Immune MedicineMinistry of EducationAnhui Collaborative Innovation Center of Anti-inflammatory and Immune MedicineCenter of Rheumatoid Arthritis of Anhui Medical UniversityHefei230032China
| | - Bo Liang
- Institute of Dermatology and Department of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefei230032China
| | - Chenchen Han
- Institute of Clinical PharmacologyAnhui Medical UniversityKey Laboratory of Anti-inflammatory and Immune MedicineMinistry of EducationAnhui Collaborative Innovation Center of Anti-inflammatory and Immune MedicineCenter of Rheumatoid Arthritis of Anhui Medical UniversityHefei230032China
| | - Yu Zhang
- Institute of Clinical PharmacologyAnhui Medical UniversityKey Laboratory of Anti-inflammatory and Immune MedicineMinistry of EducationAnhui Collaborative Innovation Center of Anti-inflammatory and Immune MedicineCenter of Rheumatoid Arthritis of Anhui Medical UniversityHefei230032China
| | - Qian Liu
- Institute of Clinical PharmacologyAnhui Medical UniversityKey Laboratory of Anti-inflammatory and Immune MedicineMinistry of EducationAnhui Collaborative Innovation Center of Anti-inflammatory and Immune MedicineCenter of Rheumatoid Arthritis of Anhui Medical UniversityHefei230032China
| | - Wei Wei
- Institute of Clinical PharmacologyAnhui Medical UniversityKey Laboratory of Anti-inflammatory and Immune MedicineMinistry of EducationAnhui Collaborative Innovation Center of Anti-inflammatory and Immune MedicineCenter of Rheumatoid Arthritis of Anhui Medical UniversityHefei230032China,Correspondence address. Tel: +86-551-65161209; E-mail: (Y.M.) / E-mail: (W.W.) @ahmu.edu.cn
| | - Yang Ma
- Institute of Clinical PharmacologyAnhui Medical UniversityKey Laboratory of Anti-inflammatory and Immune MedicineMinistry of EducationAnhui Collaborative Innovation Center of Anti-inflammatory and Immune MedicineCenter of Rheumatoid Arthritis of Anhui Medical UniversityHefei230032China,Correspondence address. Tel: +86-551-65161209; E-mail: (Y.M.) / E-mail: (W.W.) @ahmu.edu.cn
| |
Collapse
|
4
|
Fouchécourt S, Fillon V, Marrauld C, Callot C, Ronsin S, Picolo F, Douet C, Piégu B, Monget P. Expanding duplication of the testis PHD Finger Protein 7 (PHF7) gene in the chicken genome. Genomics 2022; 114:110411. [PMID: 35716824 DOI: 10.1016/j.ygeno.2022.110411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/06/2022] [Accepted: 06/10/2022] [Indexed: 11/04/2022]
Abstract
Gene duplications increase genetic and phenotypic diversity and occur in complex genomic regions that are still difficult to sequence and assemble. PHD Finger Protein 7 (PHF7) acts during spermiogenesis for histone-to-histone protamine exchange and is a determinant of male fertility in Drosophila and the mouse. We aimed to explore and characterise in the chicken genome the expanding family of the numerous orthologues of the unique mouse Phf7 gene (highly expressed in the testis), observing the fact that this information is unclear and/or variable according to the versions of databases. We validated nine primer pairs by in silico PCR for their use in screening the chicken bacterial artificial chromosome (BAC) library to produce BAC-derived probes to detect and localise PHF7-like loci by fluorescence in situ hybridisation (FISH). We selected nine BAC that highlighted nine chromosomal regions for a total of 10 distinct PHF7-like loci on five Gallus gallus chromosomes: Chr1 (three loci), Chr2 (two loci), Chr12 (one locus), Chr19 (one locus) and ChrZ (three loci). We sequenced the corresponding BAC by using high-performance PacBio technology. After assembly, we performed annotation with the FGENESH program: there were a total of 116 peptides, including 39 PHF7-like proteins identified by BLASTP. These proteins share a common exon-intron core structure of 8-11 exons. Phylogeny revealed that the duplications occurred first between chromosomal regions and then inside each region. There are other duplicated genes in the identified BAC sequences, suggesting that these genomic regions exhibit a high rate of tandem duplication. We showed that the PHF7 gene, which is highly expressed in the rooster testis, is a highly duplicated gene family in the chicken genome, and this phenomenon probably concerns other bird species.
Collapse
Affiliation(s)
| | - Valérie Fillon
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Christelle Marrauld
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Caroline Callot
- CNRGV - Plant Genomic Center, INRAE, F-31326, Castanet Tolosan, France
| | - Sarah Ronsin
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Floriane Picolo
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Cécile Douet
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Benoit Piégu
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Philippe Monget
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| |
Collapse
|
5
|
Kienes I, Weidl T, Mirza N, Chamaillard M, Kufer TA. Role of NLRs in the Regulation of Type I Interferon Signaling, Host Defense and Tolerance to Inflammation. Int J Mol Sci 2021; 22:1301. [PMID: 33525590 PMCID: PMC7865845 DOI: 10.3390/ijms22031301] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Type I interferon signaling contributes to the development of innate and adaptive immune responses to either viruses, fungi, or bacteria. However, amplitude and timing of the interferon response is of utmost importance for preventing an underwhelming outcome, or tissue damage. While several pathogens evolved strategies for disturbing the quality of interferon signaling, there is growing evidence that this pathway can be regulated by several members of the Nod-like receptor (NLR) family, although the precise mechanism for most of these remains elusive. NLRs consist of a family of about 20 proteins in mammals, which are capable of sensing microbial products as well as endogenous signals related to tissue injury. Here we provide an overview of our current understanding of the function of those NLRs in type I interferon responses with a focus on viral infections. We discuss how NLR-mediated type I interferon regulation can influence the development of auto-immunity and the immune response to infection.
Collapse
Affiliation(s)
- Ioannis Kienes
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| | - Tanja Weidl
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| | - Nora Mirza
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| | | | - Thomas A. Kufer
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| |
Collapse
|
6
|
Amoushahi M, Sunde L, Lykke-Hartmann K. The pivotal roles of the NOD-like receptors with a PYD domain, NLRPs, in oocytes and early embryo development†. Biol Reprod 2020; 101:284-296. [PMID: 31201414 DOI: 10.1093/biolre/ioz098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/29/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptors with a pyrin domain (PYD), NLRPs, are pattern recognition receptors, well recognized for their important roles in innate immunity and apoptosis. However, several NLRPs have received attention for their new, specialized roles as maternally contributed genes important in reproduction and embryo development. Several NLRPs have been shown to be specifically expressed in oocytes and preimplantation embryos. Interestingly, and in line with divergent functions, NLRP genes reveal a complex evolutionary divergence. The most pronounced difference is the human-specific NLRP7 gene, not identified in rodents. However, mouse models have been extensively used to study maternally contributed NLRPs. The NLRP2 and NLRP5 proteins are components of the subcortical maternal complex (SCMC), which was recently identified as essential for mouse preimplantation development. The SCMC integrates multiple proteins, including KHDC3L, NLRP5, TLE6, OOEP, NLRP2, and PADI6. The NLRP5 (also known as MATER) has been extensively studied. In humans, inactivating variants in specific NLRP genes in the mother are associated with distinct phenotypes in the offspring, such as biparental hydatidiform moles (BiHMs) and preterm birth. Maternal-effect recessive mutations in KHDC3L and NLRP5 (and NLRP7) are associated with reduced reproductive outcomes, BiHM, and broad multilocus imprinting perturbations. The precise mechanisms of NLRPs are unknown, but research strongly indicates their pivotal roles in the establishment of genomic imprints and post-zygotic methylation maintenance, among other processes. Challenges for the future include translations of findings from the mouse model into human contexts and implementation in therapies and clinical fertility management.
Collapse
Affiliation(s)
| | - Lone Sunde
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Li G, Tian X, Lv D, Zhang L, Zhang Z, Wang J, Yang M, Tao J, Ma T, Wu H, Ji P, Wu Y, Lian Z, Cui W, Liu G. NLRP7 is expressed in the ovine ovary and associated with in vitro pre-implantation embryo development. Reproduction 2020; 158:415-427. [PMID: 31505467 PMCID: PMC6826174 DOI: 10.1530/rep-19-0081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
NLRP (NACHT, LRR and PYD domain-containing proteins) family plays pivotal roles in mammalian reproduction. Mutation of NLRP7 is often associated with human recurrent hydatidiform moles. Few studies regarding the functions of NLRP7 have been performed in other mammalian species rather than humans. In the current study, for the first time, the function of NLRP7 has been explored in ovine ovary. NLRP7 protein was mainly located in ovarian follicles and in in vitro pre-implantation embryos. To identify its origin, 763 bp partial CDS of NLRP7 deriving from sheep cumulus oocyte complexes (COCs) was cloned, it showed a great homology with Homo sapiens. The high levels of mRNA and protein of NLRP7 were steadily expressed in oocytes, parthenogenetic embryos or IVF embryos. NLRP7 knockdown by the combination of siRNA and shRNA jeopardized both the parthenogenetic and IVF embryo development. These results strongly suggest that NLRP7 plays an important role in ovine reproduction. The potential mechanisms of NLRP7 will be fully investigated in the future.
Collapse
Affiliation(s)
- Guangdong Li
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiuzhi Tian
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dongying Lv
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Zhang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenzhen Zhang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Minghui Yang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingli Tao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Teng Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pengyun Ji
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yingjie Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Cui
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Guoshi Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Amoushahi M, Steffensen LL, Galieva A, Agger J, Heuck A, Siupka P, Ernst E, Nielsen MS, Sunde L, Lykke-Hartmann K. Maternally contributed Nlrp9b expressed in human and mouse ovarian follicles contributes to early murine preimplantation development. J Assist Reprod Genet 2020; 37:1355-1365. [PMID: 32399794 PMCID: PMC7311623 DOI: 10.1007/s10815-020-01767-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/27/2020] [Indexed: 02/03/2023] Open
Abstract
PURPOSE The aim of the study is to investigate presence and role of the gene encoding the maternally contributed nucleotide-binding oligomerization domain (NOD)-like receptors with a pyrin domain (PYD)-containing protein 9 (NLRP9) in human and mouse ovaries, respectively, and in preimplantation mouse embryo development by knocking down Nlrp9b. METHODS Expression levels of NLRP9 mRNA in human follicles were extracted from RNA sequencing data from previous studies. In this study, we performed a qPCR analysis of Nlpr9b mRNA in mouse oocytes and found it present. Intracellular ovarian distribution of NLRP9B protein was accomplished using immunohistochemistry. The distribution of NLRP9B was explored using a reporter gene approach, fusing NLRP9B to green fluorescent protein and microinjection of in vitro-generated mRNA. Nlrp9b mRNA function was knocked down by microinjection of short interference (si) RNA targeting Nlrp9b, into mouse pronuclear zygotes. Knockdown of the Nlrp9b mRNA transcript was confirmed by qPCR. RESULT We found that the human NLRP9 gene and its corresponding protein are highly expressed in human primordial and primary follicles. The NLRP9B protein is localized to the cytoplasm in the blastomeres of a 2-cell embryo in mice. SiRNA-mediated knockdown of Nlrp9b caused rapid elimination of endogenous Nlrp9b mRNA and premature embryo arrest at the 2- to 4-cell stages compared with that of the siRNA-scrambled control group. CONCLUSIONS These results suggest that mouse Nlrp9b, as a maternal effect gene, could contribute to mouse preimplantation embryo development. It remains to investigate whether NLRP9 have a crucial role in human preimplantation embryo and infertility.
Collapse
Affiliation(s)
| | | | - Adelya Galieva
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jens Agger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anders Heuck
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Piotr Siupka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Erik Ernst
- The Fertility Clinic, Horsens Hospital, Horsens, Denmark.,The Fertility Clinic, Aarhus University Hospital, 8200, Aarhus, Denmark
| | - Morten S Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Aarhus, Denmark
| | - Lone Sunde
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark. .,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark. .,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
9
|
Sai L, Li Y, Zhang Y, Zhang J, Qu B, Guo Q, Han M, Jia Q, Yu G, Li K, Bo C, Zhang Y, Shao H, Peng C. Distinct m 6A methylome profiles in poly(A) RNA from Xenopus laevis testis and that treated with atrazine. CHEMOSPHERE 2020; 245:125631. [PMID: 31877456 DOI: 10.1016/j.chemosphere.2019.125631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Recent discovery of reversible N6-methyladenosine (m6A) methylation on messenger RNA (mRNA) and mapping of m6A methylomes in mammals, plant and yeast revealed potential regulatory functions of this RNA modification. However, the role of the m6A methylomes in amphibious is still poorly understood. Here, we examined the m6A transcriptome-wide profile in testis tissues of Xenopus laevis (X. laevis) with and without treatment with 100 μg/L atrazine (AZ) through m6A sequencing analysis using the latest Illumina HiSeq sequencer. The results revealed that m6A is a highly conserved modification of mRNA in X. laevis. Distinct from that in mammals, m6A in X. laevisis enriched around the stop codon and start codon, as is reported in plant. We then investigated the differential expression m6A in testes of AZ-exposed X. laevis and compared that with the X. laevis in the control group by m6A sequencing. The results indicated that AZ leads to altered expression profile in 1380 m6A modification sites (696 upregulated and 684 downregulated). KEGG pathway analysis indicates that the "NOD-like receptors", "tight junction", "Peroxisome proliferator-activated receptors", "adherens junctions", "Glycerophospholipid metabolism" and "Fatty acid biosynthesis" signaling pathways may be associated with abnormal testis development of X. laevis due to exposure to AZ. Analysis results showed a positive correlation between m6A modification and mRNA abundance, suggesting a regulatory role of m6A in amphibious gene expression. Our first report of m6A transcriptome-wide map of an amphibian species X. laevis presented here provides a starting roadmap for uncovering m6A functions that may affect/control amphibian testis development.
Collapse
Affiliation(s)
- Linlin Sai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China.
| | - Yan Li
- Shandong Provincial Chest Hospital, Ji'nan, Shandong, China
| | - Yecui Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Juan Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Binpeng Qu
- Shandong Medical College, Ji'nan, Shandong, China
| | - Qiming Guo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Mingming Han
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Gongchang Yu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Kaili Li
- The NO.4 Hospital 1946 Jinan Shandong, Ji'nan, Shandong, China
| | - Cunxiang Bo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Yu Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China.
| | - Cheng Peng
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China; The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Ji'nan, Shandong, China
| |
Collapse
|
10
|
Sui X, Hu Y, Ren C, Cao Q, Zhou S, Cao Y, Li M, Shu W, Huo R. METTL3-mediated m 6A is required for murine oocyte maturation and maternal-to-zygotic transition. Cell Cycle 2020; 19:391-404. [PMID: 31916488 DOI: 10.1080/15384101.2019.1711324] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent epigenetic modification of messenger RNA (mRNA) in higher eukaryotes; this modification is mainly catalyzed by a methyltransferase complex including methyltransferase-like 3 (METTL3) as a key factor. Although m6A modification has been proven to play an essential role in diverse biological processes, our knowledge of Mettl3 is still limited because Mettl3 mutations are lethal to embryos in both mammals and plants. In this study, we knocked down Mettl3 by microinjection of its specific short interfering RNAs (siRNAs) or morpholino into fully grown germinal vesicle (GV) oocytes. As a result, we demonstrated that knocking down Mettl3 in female germ cells severely inhibited oocyte maturation by decreasing mRNA translation efficiency and led to defects in the maternal-to-zygotic transition, probably due to its interference in disrupting mRNA degradation. The discovery from this study suggests that the reversible m6A modification has vital functions in mammalian oocyte maturation and pre-implantation embryonic development processes.
Collapse
Affiliation(s)
- Xuesong Sui
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Hu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Chao Ren
- Department of Biotechnology, Beijing Institude of Radiation Medicine, Beijing, China
| | - Qiqi Cao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Shuai Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Yumeng Cao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Mingrui Li
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Wenjie Shu
- Department of Biotechnology, Beijing Institude of Radiation Medicine, Beijing, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Takagi M, Takakubo Y, Pajarinen J, Naganuma Y, Oki H, Maruyama M, Goodman SB. Danger of frustrated sensors: Role of Toll-like receptors and NOD-like receptors in aseptic and septic inflammations around total hip replacements. J Orthop Translat 2017; 10:68-85. [PMID: 29130033 PMCID: PMC5676564 DOI: 10.1016/j.jot.2017.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The innate immune sensors, Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), can recognize not only exogenous pathogen-associated molecular patterns (PAMPs), but also endogenous molecules created upon tissue injury, sterile inflammation, and degeneration. Endogenous ligands are called damage-associated molecular patterns (DAMPs), and include endogenous molecules released from activated and necrotic cells as well as damaged extracellular matrix. TLRs and NLRs can interact with various ligands derived from PAMPs and DAMPs, leading to activation and/or modulation of intracellular signalling pathways. Intensive research on the innate immune sensors, TLRs and NLRs, has brought new insights into the pathogenesis of not only various infectious and rheumatic diseases, but also aseptic foreign body granuloma and septic inflammation of failed total hip replacements (THRs). In this review, recent knowledge is summarized on the innate immune system, including TLRs and NLRs and their danger signals, with special reference to their possible role in the adverse local host response to THRs. Translational potential of this article: A clear understanding of the roles of Toll-like receptors and NOD-like receptors in aseptic and septic loosening of joint replacements will facilitate potential strategies to mitigate these events, thereby extending the longevity of implants in humans.
Collapse
Affiliation(s)
- Michiaki Takagi
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Yuya Takakubo
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Jukka Pajarinen
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Yasushi Naganuma
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Hiroharu Oki
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan.,Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Motta V, Soares F, Sun T, Philpott DJ. NOD-like receptors: versatile cytosolic sentinels. Physiol Rev 2015; 95:149-78. [PMID: 25540141 DOI: 10.1152/physrev.00009.2014] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Nucleotide binding oligomerization domain (NOD)-like receptors are cytoplasmic pattern-recognition receptors that together with RIG-I-like receptor (retinoic acid-inducible gene 1), Toll-like receptor (TLR), and C-type lectin families make up the innate pathogen pattern recognition system. There are 22 members of NLRs in humans, 34 in mice, and even a larger number in some invertebrates like sea urchins, which contain more than 200 receptors. Although initially described to respond to intracellular pathogens, NLRs have been shown to play important roles in distinct biological processes ranging from regulation of antigen presentation, sensing metabolic changes in the cell, modulation of inflammation, embryo development, cell death, and differentiation of the adaptive immune response. The diversity among NLR receptors is derived from ligand specificity conferred by the leucine-rich repeats and an NH2-terminal effector domain that triggers the activation of different biological pathways. Here, we describe NLR genes associated with different biological processes and the molecular mechanisms underlying their function. Furthermore, we discuss mutations in NLR genes that have been associated with human diseases.
Collapse
Affiliation(s)
- Vinicius Motta
- Departments of Immunology and of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Fraser Soares
- Departments of Immunology and of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Tian Sun
- Departments of Immunology and of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Dana J Philpott
- Departments of Immunology and of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
13
|
Van Gorp H, Kuchmiy A, Van Hauwermeiren F, Lamkanfi M. NOD-like receptors interfacing the immune and reproductive systems. FEBS J 2014; 281:4568-82. [PMID: 25154302 DOI: 10.1111/febs.13014] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 12/13/2022]
Abstract
Nucleotide-binding oligomerization domain receptors (NOD-like receptors, NLRs) are intracellular proteins that are chiefly known for their critical functions in inflammatory responses and host defense against microbial pathogens. Several NLRs have been demonstrated to assemble inflammasomes or to engage transcriptional signaling cascades that result in the production of pro-inflammatory cytokines and bactericidal factors. In recent years, NLRs have also emerged as key regulators of early mammalian embryogenesis and reproduction. A subset of phylogenetically related NLRs represents a new class of maternal effect genes that are highly expressed in maturing oocytes and pre-implantation embryos. Mutations in several of these NLRs have been linked to hereditary reproductive defects and imprinting diseases. In this review, we discuss the expression profiles, the emerging functions and molecular mode of action of these NLRs with newly recognized roles at the interfaces of the immune and reproductive systems. In addition, we provide an overview of coding mutations in NLRs that have been associated with human reproductive diseases, and outline crucial outstanding questions in this emerging research field.
Collapse
Affiliation(s)
- Hanne Van Gorp
- Department of Medical Protein Research, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
14
|
Chaput C, Sander LE, Suttorp N, Opitz B. NOD-Like Receptors in Lung Diseases. Front Immunol 2013; 4:393. [PMID: 24312100 PMCID: PMC3836004 DOI: 10.3389/fimmu.2013.00393] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/07/2013] [Indexed: 12/15/2022] Open
Abstract
The lung is a particularly vulnerable organ at the interface of the body and the exterior environment. It is constantly exposed to microbes and particles by inhalation. The innate immune system needs to react promptly and adequately to potential dangers posed by these microbes and particles, while at the same time avoiding extensive tissue damage. Nucleotide-binding oligomerization domain-like receptors (NLRs) represent a group of key sensors for microbes and damage in the lung. As such they are important players in various infectious as well as acute and chronic sterile inflammatory diseases, such as pneumonia, chronic obstructive pulmonary disease (COPD), acute lung injury/acute respiratory distress syndrome, pneumoconiosis, and asthma. Activation of most known NLRs leads to the production and release of pro-inflammatory cytokines, and/or to the induction of cell death. We will review NLR functions in the lung during infection and sterile inflammation.
Collapse
Affiliation(s)
- Catherine Chaput
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | | | | | | |
Collapse
|
15
|
Slim R, Wallace EP. NLRP7 and the Genetics of Hydatidiform Moles: Recent Advances and New Challenges. Front Immunol 2013; 4:242. [PMID: 23970884 PMCID: PMC3747449 DOI: 10.3389/fimmu.2013.00242] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/05/2013] [Indexed: 01/09/2023] Open
Abstract
NOD-like receptor proteins (NLRPs) are emerging key players in several inflammatory pathways in Mammals. The first identified gene coding for a protein from this family is Nlrp5 and was originally called Mater for “Maternal Antigen That Mouse Embryos Require” for normal development beyond the two-cell stage. This important discovery was followed by the identification of other NLRPs playing roles in inflammatory disorders and of the first maternal-effect gene in humans, NLRP7, which is responsible for an aberrant form of human pregnancy called hydatidiform mole (HM). In this review, we recapitulate the various aspects of the pathology of HM, highlight recent advances regarding NLRP7 and its role in HM and related forms of reproductive losses, and expand our discussion to other NLRPs with a special emphasis on those with known roles in mammalian reproduction. Our aim is to facilitate the genetic complexity of recurrent fetal loss in humans and encourage interdisciplinary collaborations in the fields of NLRPs and reproductive loss.
Collapse
Affiliation(s)
- Rima Slim
- Department of Human Genetics, McGill University Health Centre , Montreal, QC , Canada ; Department of Obstetrics and Gynecology, McGill University Health Centre , Montreal, QC , Canada
| | | |
Collapse
|