1
|
Ma W, Li C. Enhancing postmenopausal osteoporosis: a study of KLF2 transcription factor secretion and PI3K-Akt signaling pathway activation by PIK3CA in bone marrow mesenchymal stem cells. Arch Med Sci 2024; 20:918-937. [PMID: 39050179 PMCID: PMC11264107 DOI: 10.5114/aoms/171785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/02/2023] [Indexed: 07/27/2024] Open
Abstract
Introduction Mesenchymal stem cells can develop into osteoblasts, making them a promising cell-based osteoporosis treatment. Despite their therapeutic potential, their molecular processes are little known. Bioinformatics and experimental analysis were used to determine the molecular processes of bone marrow mesenchymal stem cell (BMSC) therapy for postmenopausal osteoporosis (PMO). Material and methods We used weighted gene co-expression network analysis (WGCNA) to isolate core gene sets from two GEO microarray datasets (GSE7158 and GSE56815). GeneCards found PMO-related genes. GO, KEGG, Lasso regression, and ROC curve analysis refined our candidate genes. Using the GSE105145 dataset, we evaluated KLF2 expression in BMSCs and examined the link between KLF2 and PIK3CA using Pearson correlation analysis. We created a protein-protein interaction network of essential genes involved in osteoblast differentiation and validated the functional roles of KLF2 and PIK3CA in BMSC osteoblast differentiation in vitro. Results We created 6 co-expression modules from 10 419 differentially expressed genes (DEGs). PIK3CA, the key gene in the PI3K-Akt pathway, was among 197 PMO-associated DEGs. KLF2 also induced PIK3CA transcription in PMO. BMSCs also expressed elevated KLF2. BMSC osteoblast differentiation involved the PI3K-Akt pathway. In vitro, KLF2 increased PIK3CA transcription and activated the PI3K-Akt pathway to differentiate BMSCs into osteoblasts. Conclusions BMSCs release KLF2, which stimulates the PIK3CA-dependent PI3K-Akt pathway to treat PMO. Our findings illuminates the involvement of KLF2 and the PI3K-Akt pathway in BMSC osteoblast development, which may lead to better PMO treatments.
Collapse
Affiliation(s)
- Wenjie Ma
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Chen Li
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
2
|
Zhou Y, Liu C, He J, Dong L, Zhu H, Zhang B, Feng X, Weng W, Cheng K, Yu M, Wang H. KLF2 + stemness maintains human mesenchymal stem cells in bone regeneration. Stem Cells 2019; 38:395-409. [PMID: 31721356 DOI: 10.1002/stem.3120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/01/2019] [Indexed: 01/04/2023]
Abstract
Mesenchymal stem cells (MSCs), which are undifferentiated stem cells with the property of stemness and the potential to differentiate into multiple lineages, including osteoblasts, have attracted a great deal of attention in bone tissue engineering. Consistent with the heterogeneity of MSCs, various surface markers have been used. However, it is still unclear which markers of MSCs are best for cell amplification in vitro and later bone regeneration in vivo. Krüppel-like Factor 2 (KLF2) is an important indicator of the stemness of human MSCs (hMSCs) and as early vascularization is also critical for bone regeneration, we used KLF2 as a novel in vitro marker for MSCs and investigated the angiogenesis and osteogenesis between KLF2+ MSCs and endothelial cells (ECs). We found a synergistic interaction between hMSCs and human umbilical vein ECs (HUVECs) in that KLF2+ stemness-maintained hMSCs initially promoted the angiogenesis of HUVECs, which in turn more efficiently stimulated the osteogenesis of hMSCs. In fact, KLF2+ hMSCs secreted angiogenic factors initially, with some of the cells then differentiating into pericytes through the PDGF-BB/PDGFR-β signaling pathway, which improved blood vessel formation. The matured HUVECs in turn synergistically enhanced the osteogenesis of KLF2+ hMSCs through upregulated vascular endothelial growth factor. A three-dimensional coculture model using cell-laden gelatin methacrylate (GelMA) hydrogel further confirmed these results. This study provides insight into the stemness-directed synergistic interaction between hMSCs and HUVECs, and our results will have a profound impact on further strategies involving the application of KLF2+ hMSC/HUVEC-laden GelMA hydrogel in vascular network bioengineering and bone regeneration.
Collapse
Affiliation(s)
- Ying Zhou
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Chao Liu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jianxiang He
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Lingqing Dong
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Huiyong Zhu
- The First Affiliated Hospital of Medical College, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Bin Zhang
- The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaoxia Feng
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Wenjian Weng
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Kui Cheng
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- The First Affiliated Hospital of Medical College, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Huiming Wang
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- The First Affiliated Hospital of Medical College, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
3
|
Conditioned Medium Enhances Osteogenic Differentiation of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells. Tissue Eng Regen Med 2019; 16:141-150. [PMID: 30989041 DOI: 10.1007/s13770-018-0173-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/08/2018] [Accepted: 12/10/2018] [Indexed: 01/22/2023] Open
Abstract
Background Recent studies have shown that induced pluripotent stem cells (iPSCs) could be differentiated into mesenchymal stem cells (MSCs) with notable advantages over iPSCs per se. In order to promote the application of iPSC-MSCs for osteoregenerative medicine, the present study aimed to assess the ability of murine iPSC-MSCs to differentiate into osteoblast phenotype. Methods Osteogenic differentiation medium, blending mouse osteoblast-conditioned medium (CM) with basic medium (BM) at ratio 3:7, 5:5 and 7:3, were administered to iPSC-MSCs, respectively. After 14 days, differentiation was evaluated by lineage-specific morphology, histological stain, quantitative reverse transcription-polymerase chain reaction and immunostaining. Results The osteogenesis-related genes, alp, runx2, col1 and ocn expressions suggest that culture medium consisting of CM:BM at the ratio of 3:7 enhanced the osteogenic differentiation more than other concentrations that were tested. In addition, the alkaline phosphatase activity and osteogenic marker Runx2 expression demonstrate that the combination of CM and BM significantly enhanced the osteogenic differentiation of iPSC-MSCs. Conclusion In summary, this study has shown that osteoblast-derived CM can dramatically enhance osteogenic differentiation of iPSC-MSCs toward osteoblasts. Results from this work will contribute to optimize the osteogenic induction conditions of iPSC-MSCs and will assist in the potential application of iPSC-MSCs for bone tissue engineering.
Collapse
|
4
|
Proteomic study of different culture medium serum volume fractions on RANKL-dependent RAW264.7 cells differentiating into osteoclasts. Proteome Sci 2015; 13:16. [PMID: 25969670 PMCID: PMC4427947 DOI: 10.1186/s12953-015-0073-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/22/2015] [Indexed: 02/07/2023] Open
Abstract
Background Cultivation of osteoclasts is a basic tool for investigating osteolytic bone diseases. Fetal bovine serum (FBS) is the standard supplement used for in vitro cell culture medium. Typically, the serum volume fraction used for osteoclast cultivation is 10%. In this study, we investigated the use of a low serum (1% FBS) model for culturing osteoclasts. Results To confirm the validity of this model for use in osteoclast research, we compared the capacity for osteoclastogenesis and bone resorption of RANKL-induced RAW 264.7 cells cultured in medium supplemented with 10% FBS and 1% FBS. Osteoclasts were successfully generated in medium supplemented with 1% FBS, and exhibited prolonged longevity and similar bone resorbing ability to those generated in medium supplemented with 10% FBS, although the osteoclasts were smaller in size. Proteomics and bioinformatics analyses were performed to assess the suitability of osteoclasts formed in low serum-containing medium for use in research focusing on osteoclast differentiation and function. Our study demonstrated that a total of 100 proteins were differentially expressed in cells cultured in medium containing 1% FBS, of which 29 proteins were upregulated, and 71 proteins were downregulated. Bioinformatics analysis showed that the electron transport chain and oxidative phosphorylation pathways were downregulated obviously; however, the osteoclast signaling pathway was unaffected. The data have been deposited to the ProteomeXchange with identifier PXD001935. Conclusion Our study provides clear evidence of the validity of the low serum model for use in studying RANKL-dependent osteoclasts differentiation and bone resorption with the advantage of prolonged survival time. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0073-6) contains supplementary material, which is available to authorized users.
Collapse
|