1
|
Chen Y, Wang B, Lai WF, Chen Y, Pan R, Tang Z, Liu D. Chinese herbal formula (GCNY)-medicated serum alleviates peroxidation induced by H2O2 in human microglial cells. Front Neurosci 2022; 16:990040. [PMID: 36188472 PMCID: PMC9515651 DOI: 10.3389/fnins.2022.990040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/15/2022] [Indexed: 12/03/2022] Open
Abstract
Traditional Chinese herbal medicine aiming at nourishing yin formed a distinctive school of thought in history to achieve anti-aging and longevity. In the formula Gancao nourishing yin (GCNY) decoction, all of the ingredients show antioxidant properties. However, in real clinical practice, extractions of herbs are rarely applied alone but are prescribed as the integrated formula. To investigate whether GCNY possesses anti-oxidation potential, we applied GCNY to treat rats to acquire medicated serum, which was then added on H2O2 (200 μM)-modeled human microglial cell line HMC-3 in comparison with its control serum. The results revealed that GCNY-medicated serum decreased reactive oxygen species (ROS) levels. Inflammatory cytokines such as pNF-κB p65 (ser536) and IL-6 were also decreased. Nrf2 and its pathway-related molecules, such as HO1, ABCC2, GLCM, ME1, NQO1, and TKT, were activated by H2O2 modeling while declined by treating with GCNY-medicated serum, which indicated attenuated oxidative stress of GCNY. Furthermore, mRNA-seq analysis showed 58 differential expressed genes (DEGs), which were enriched in pathways including antigen processing and presentation, longevity regulation, oxidative phosphorylation, and Parkinson’s disease progression. DEGs that were downregulated by H2O2 modeling but upregulated by GCNY treatment include CENPF, MKI67, PRR11, and TOP2A. Those targets were reported to be associated with the cell cycle and cell proliferation and belong to the category of growth factor genes. In conclusion, this study verified anti-oxidation effects of GCNY and indicated its promising application for cognitive degeneration and aging-related disorders.
Collapse
Affiliation(s)
- Yong Chen
- Division of Rheumatology and Research, Department of Geriatrics, The Second Clinical Medical College, Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Baojiang Wang
- Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Wing-Fu Lai
- Department of Urology, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Zhejiang, China
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Yanjuan Chen
- Division of Rheumatology and Research, Department of Geriatrics, The Second Clinical Medical College, Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Rongbin Pan
- Cancer Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zhongsheng Tang
- Department of Anatomy, School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dongzhou Liu
- Division of Rheumatology and Research, Department of Geriatrics, The Second Clinical Medical College, Jinan University, Shenzhen People’s Hospital, Shenzhen, China
- *Correspondence: Dongzhou Liu,
| |
Collapse
|
2
|
Villa R, Fergnani VGC, Silipigni R, Guerneri S, Cinnante C, Guala A, Danesino C, Scola E, Conte G, Fumagalli M, Gangi S, Colombo L, Picciolini O, Ajmone PF, Accogli A, Madia F, Tassano E, Scala M, Capra V, Srour M, Spaccini L, Righini A, Greco D, Castiglia L, Romano C, Bedeschi MF. Structural brain anomalies in Cri-du-Chat syndrome: MRI findings in 14 patients and possible genotype-phenotype correlations. Eur J Paediatr Neurol 2020; 28:110-119. [PMID: 32800423 DOI: 10.1016/j.ejpn.2020.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/02/2020] [Accepted: 07/03/2020] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Cri-du-Chat Syndrome (CdCS) is a genetic condition due to deletions showing different breakpoints encompassing a critical region on the short arm of chromosome 5, located between p15.2 and p15.3, first defined by Niebuhr in 1978. The classic phenotype includes a characteristic cry, peculiar facies, microcephaly, growth retardation, hypotonia, speech and psychomotor delay and intellectual disability. A wide spectrum of clinical manifestations can be attributed to differences in size and localization of the 5p deletion. Several critical regions related to some of the main features (such as cry, peculiar facies, developmental delay) have been identified. The aim of this study is to further define the genotype-phenotype correlations in CdCS with particular regards to the specific neuroradiological findings. PATIENTS AND METHODS Fourteen patients with 5p deletions have been included in the present study. Neuroimaging studies were conducted using brain Magnetic Resonance Imaging (MRI). Genetic testing was performed by means of comparative genomic hybridization (CGH) array at 130 kb resolution. RESULTS MRI analyses showed that isolated pontine hypoplasia is the most common finding, followed by vermian hypoplasia, ventricular anomalies, abnormal basal angle, widening of cavum sellae, increased signal of white matter, corpus callosum anomalies, and anomalies of cortical development. Chromosomal microarray analysis identified deletions ranging in size from 11,6 to 33,8 Mb on the short arm of chromosome 5. Then, we took into consideration the overlapping and non-overlapping deleted regions. The goal was to establish a correlation between the deleted segments and the neuroradiological features of our patients. CONCLUSIONS Performing MRI on all the patients in our cohort, allowed us to expand the neuroradiological phenotype in CdCS. Moreover, possible critical regions associated to characteristic MRI findings have been identified.
Collapse
Affiliation(s)
- R Villa
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| | - V G C Fergnani
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| | - R Silipigni
- Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - S Guerneri
- Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - C Cinnante
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - A Guala
- Department of Pediatrics, Castelli Hospital, Verbania, Italy.
| | - C Danesino
- Molecular Medicine Department, General Biology and Medical Genetics Unit, University of Pavia, Pavia, Italy.
| | - E Scola
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - G Conte
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - M Fumagalli
- NICU, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - S Gangi
- NICU, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - L Colombo
- NICU, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - O Picciolini
- Pediatric Physical Medicine & Rehabilitation Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - P F Ajmone
- Child and Adolescent Neuropsychiatric Service (UONPIA), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.
| | - A Accogli
- DINOGMI, Università degli Studi di Genova, Italy; IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - F Madia
- IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - E Tassano
- IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - M Scala
- DINOGMI, Università degli Studi di Genova, Italy; IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - V Capra
- IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - M Srour
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, Canada; McGill University Health Center (MUHC) Research Institute, Montreal, Canada.
| | - L Spaccini
- Clinical Genetics Unit, Department of Obstetrics and Gynecology, V. Buzzi Children's Hospital, University of Milan, Italy.
| | - A Righini
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, University of Milan, Italy.
| | - D Greco
- Oasi Research Institute, IRCCS, Troina, Italy.
| | - L Castiglia
- Oasi Research Institute, IRCCS, Troina, Italy.
| | - C Romano
- Oasi Research Institute, IRCCS, Troina, Italy.
| | - M F Bedeschi
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
3
|
Wang B, Pan JX, Yu H, Xiong L, Zhao K, Xiong S, Guo JP, Lin S, Sun D, Zhao L, Guo H, Mei L, Xiong WC. Lack of Myosin X Enhances Osteoclastogenesis and Increases Cell Surface Unc5b in Osteoclast-Lineage Cells. J Bone Miner Res 2019; 34:939-954. [PMID: 30645777 PMCID: PMC7105956 DOI: 10.1002/jbmr.3667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/23/2018] [Accepted: 01/05/2019] [Indexed: 01/08/2023]
Abstract
Normal bone mass is maintained by balanced bone formation and resorption. Myosin X (Myo10), an unconventional "myosin tail homology 4-band 4.1, ezrin, radixin, moesin" (MyTH4-FERM) domain containing myosin, is implicated in regulating osteoclast (OC) adhesion, podosome positioning, and differentiation in vitro. However, evidence is lacking for Myo10 in vivo function. Here we show that mice with Myo10 loss of function, Myo10m/m , exhibit osteoporotic deficits, which are likely due to the increased OC genesis and bone resorption because bone formation is unchanged. Similar deficits are detected in OC-selective Myo10 conditional knockout (cko) mice, indicating a cell autonomous function of Myo10. Further mechanistic studies suggest that Unc-5 Netrin receptor B (Unc5b) protein levels, in particular its cell surface level, are higher in the mutant OCs, but lower in RAW264.7 cells or HEK293 cells expressing Myo10. Suppressing Unc5b expression in bone marrow macrophages (BMMs) from Myo10m/m mice by infection with lentivirus of Unc5b shRNA markedly impaired RANKL-induced OC genesis. Netrin-1, a ligand of Unc5b, increased RANKL-induced OC formation in BMMs from both wild-type and Myo10m/m mice. Taken together, these results suggest that Myo10 plays a negative role in OC formation, likely by inhibiting Unc5b cell-surface targeting, and suppressing Netrin-1 promoted OC genesis. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Bo Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.,Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin-Xiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Huali Yu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.,Key laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
| | - Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Kai Zhao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Shan Xiong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jun-Peng Guo
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sen Lin
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Dong Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Lu Zhao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.,Key laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
| | - Haohan Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|