1
|
Tsai JN, Sun CY, Ding YJ, Wang YH, Lo KC, Wen CC, Lin JW, Chang CF, Hsu LS, Chen HM, Fong TH, Chen YH. Embryonic exposure to 4-methylimidazole leads to zebrafish myofibril misalignment. ENVIRONMENTAL TOXICOLOGY 2018; 33:1321-1328. [PMID: 30259639 DOI: 10.1002/tox.22640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
4-methylimidazole (4-MI) is an imidazole-derived organic chemical compound that can be used as a raw material in the manufacture of diverse chemicals and has been identified as an ingredient of caramel color in soybean sauce, beers, and other soft drinks. The aim of the present study was to investigate the teratogenic effects of 4-MI during zebrafish embryogenesis. Zebrafish embryos were treated with different dosages of 4-MI (0-120 mM) for different exposure durations (12-60 hours). The percentages of embryos with malformed phenotypes increased as the exposure dosages and duration time of 4-MI increased. We also used immunofluorescence and transmission microscopy to evaluate the subtle changes in the myofibril alignment and ultrastructure of muscle organization. Our data showed that 4-MI treatment disturbs muscle fiber alignment. Electron microscopy data indicated that Z-lines were undetectable in the 4-MI-treated embryos. Although the thick and thin filaments were visible, they were all disorganized. In addition, zebrafish embryos treated by 4-MI exhibited aberrant expression of 2 muscle-specific genes, myod and myogenin. Taken together, we concluded that early exposure to 4-MI affects zebrafish myogenesis, especially in myofibril alignment.
Collapse
Affiliation(s)
- Jen-Ning Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Yin Sun
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yu-Ju Ding
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Yun-Hsin Wang
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Kang-Chieh Lo
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Chi-Chung Wen
- Department of Mathematics, Tamkang University, Tamsui, New Taipei City, Taiwan
| | - Jia-Wei Lin
- Department of Chemical and Materials Engineering, Tamkang University, Taiwan
| | - Chiung-Fang Chang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Li-Sung Hsu
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Hui-Min Chen
- Department of Anatomy, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsorng-Harn Fong
- Department of Anatomy, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yau-Hung Chen
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| |
Collapse
|
2
|
Elmonem MA, Berlingerio SP, van den Heuvel LP, de Witte PA, Lowe M, Levtchenko EN. Genetic Renal Diseases: The Emerging Role of Zebrafish Models. Cells 2018; 7:cells7090130. [PMID: 30200518 PMCID: PMC6162634 DOI: 10.3390/cells7090130] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022] Open
Abstract
The structural and functional similarity of the larval zebrafish pronephros to the human nephron, together with the recent development of easier and more precise techniques to manipulate the zebrafish genome have motivated many researchers to model human renal diseases in the zebrafish. Over the last few years, great advances have been made, not only in the modeling techniques of genetic diseases in the zebrafish, but also in how to validate and exploit these models, crossing the bridge towards more informative explanations of disease pathophysiology and better designed therapeutic interventions in a cost-effective in vivo system. Here, we review the significant progress in these areas giving special attention to the renal phenotype evaluation techniques. We further discuss the future applications of such models, particularly their role in revealing new genetic diseases of the kidney and their potential use in personalized medicine.
Collapse
Affiliation(s)
- Mohamed A Elmonem
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, 11628 Cairo, Egypt.
| | - Sante Princiero Berlingerio
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
| | - Lambertus P van den Heuvel
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
- Department of Pediatric Nephrology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | - Peter A de Witte
- Laboratory for Molecular Bio-Discovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, 3000 Leuven, Belgium.
| | - Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
| | - Elena N Levtchenko
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
| |
Collapse
|
3
|
Hao J, Chen X, Fu T, Liu J, Yu M, Han W, He S, Qian R, Zhang F. The Expression of VHL (Von Hippel-Lindau) After Traumatic Spinal Cord Injury and Its Role in Neuronal Apoptosis. Neurochem Res 2016; 41:2391-400. [PMID: 27324785 DOI: 10.1007/s11064-016-1952-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/07/2016] [Accepted: 05/09/2016] [Indexed: 12/11/2022]
Abstract
The VHL (Von Hippel-Lindau) gene is a tumor suppressor gene, which is best known as an E3 ubiquitin ligase that negatively regulates the hypoxia inducible factor. The inactivation of VHL gene could result in the abnormal synthesis of VHL protein, which is in contact with the development and occurrence of renal clear cell carcinoma. However, the expression and possible function of VHL in central nervous system (CNS) is still unclear. To examine the function of VHL in CNS injury and repair, we used an acute spinal cord injury (SCI) model in adult rats. Western blot analysis showed an important upregulation of VHL protein, reaching a peak at day 3 and then declined during the following days. Double immunofluorescence staining showed that VHL was co-expressed with neurons, but not with astrocytes and microglia. Moreover, we detected that active caspase-3 had co-localized with VHL in neurons after SCI. Additionally in vitro, VHL depletion, by short interfering RNA, significantly reduced neuronal apoptosis. In conclusion, these data suggested that the change of VHL protein expression was related to neuronal apoptosis after SCI.
Collapse
Affiliation(s)
- Jie Hao
- Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.,Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, People's Republic of China
| | - Xiaoqing Chen
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, People's Republic of China
| | - Ting Fu
- School of Nursing, Nantong University, Nantong, People's Republic of China
| | - Jie Liu
- Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.,Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, People's Republic of China
| | - Mingchen Yu
- Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.,Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, People's Republic of China
| | - Wei Han
- Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.,Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, People's Republic of China
| | - Shuang He
- The Second Affiliated Hospital, Nantong University, Nantong, 226001, People's Republic of China
| | - Rong Qian
- Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.,Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, People's Republic of China
| | - Feng Zhang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, People's Republic of China.
| |
Collapse
|