1
|
Iori S, D'Onofrio C, Laham-Karam N, Mushimiyimana I, Lucatello L, Montanucci L, Lopparelli RM, Bonsembiante F, Capolongo F, Pauletto M, Dacasto M, Giantin M. Generation and characterization of cytochrome P450 3A74 CRISPR/Cas9 knockout bovine foetal hepatocyte cell line (BFH12). Biochem Pharmacol 2024; 224:116231. [PMID: 38648904 DOI: 10.1016/j.bcp.2024.116231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
In human, the cytochrome P450 3A (CYP3A) subfamily of drug-metabolizing enzymes (DMEs) is responsible for a significant number of phase I reactions, with the CYP3A4 isoform superintending the hepatic and intestinal metabolism of diverse endobiotic and xenobiotic compounds. The CYP3A4-dependent bioactivation of chemicals may result in hepatotoxicity and trigger carcinogenesis. In cattle, four CYP3A genes (CYP3A74, CYP3A76, CYP3A28 and CYP3A24) have been identified. Despite cattle being daily exposed to xenobiotics (e.g., mycotoxins, food additives, drugs and pesticides), the existing knowledge about the contribution of CYP3A in bovine hepatic metabolism is still incomplete. Nowadays, CRISPR/Cas9 mediated knockout (KO) is a valuable method to generate in vivo and in vitro models for studying the metabolism of xenobiotics. In the present study, we successfully performed CRISPR/Cas9-mediated KO of bovine CYP3A74, human CYP3A4-like, in a bovine foetal hepatocyte cell line (BFH12). After clonal expansion and selection, CYP3A74 ablation was confirmed at the DNA, mRNA, and protein level. The subsequent characterization of the CYP3A74 KO clone highlighted significant transcriptomic changes (RNA-sequencing) associated with the regulation of cell cycle and proliferation, immune and inflammatory response, as well as metabolic processes. Overall, this study successfully developed a new CYP3A74 KO in vitro model by using CRISPR/Cas9 technology, which represents a novel resource for xenobiotic metabolism studies in cattle. Furthermore, the transcriptomic analysis suggests a key role of CYP3A74 in bovine hepatocyte cell cycle regulation and metabolic homeostasis.
Collapse
Affiliation(s)
- Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Caterina D'Onofrio
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Nihay Laham-Karam
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211 Kuopio, Finland
| | - Isidore Mushimiyimana
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211 Kuopio, Finland
| | - Lorena Lucatello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Ludovica Montanucci
- Department of Neurology, University of Texas Health Science Center, 6431 Fannin Street, Houston, TX, OH 44106, USA
| | - Rosa Maria Lopparelli
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Federico Bonsembiante
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Francesca Capolongo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy.
| |
Collapse
|
2
|
Iori S, D'Onofrio C, Laham-Karam N, Mushimiyimana I, Lucatello L, Lopparelli RM, Gelain ME, Capolongo F, Pauletto M, Dacasto M, Giantin M. Establishment and characterization of cytochrome P450 1A1 CRISPR/Cas9 Knockout Bovine Foetal Hepatocyte Cell Line (BFH12). Cell Biol Toxicol 2024; 40:18. [PMID: 38528259 PMCID: PMC10963470 DOI: 10.1007/s10565-024-09856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
The cytochrome P450 1A (CYP1A) subfamily of xenobiotic metabolizing enzymes (XMEs) consists of two different isoforms, namely CYP1A1 and CYP1A2, which are highly conserved among species. These two isoenzymes are involved in the biotransformation of many endogenous compounds as well as in the bioactivation of several xenobiotics into carcinogenic derivatives, thereby increasing the risk of tumour development. Cattle (Bos taurus) are one of the most important food-producing animal species, being a significant source of nutrition worldwide. Despite daily exposure to xenobiotics, data on the contribution of CYP1A to bovine hepatic metabolism are still scarce. The CRISPR/Cas9-mediated knockout (KO) is a useful method for generating in vivo and in vitro models for studying xenobiotic biotransformations. In this study, we applied the ribonucleoprotein (RNP)-complex approach to successfully obtain the KO of CYP1A1 in a bovine foetal hepatocyte cell line (BFH12). After clonal expansion and selection, CYP1A1 excision was confirmed at the DNA, mRNA and protein level. Therefore, RNA-seq analysis revealed significant transcriptomic changes associated with cell cycle regulation, proliferation, and detoxification processes as well as on iron, lipid and mitochondrial homeostasis. Altogether, this study successfully generates a new bovine CYP1A1 KO in vitro model, representing a valuable resource for xenobiotic metabolism studies in this important farm animal species.
Collapse
Affiliation(s)
- Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Caterina D'Onofrio
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Nihay Laham-Karam
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211, Kuopio, Finland
| | - Isidore Mushimiyimana
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211, Kuopio, Finland
| | - Lorena Lucatello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Rosa Maria Lopparelli
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Francesca Capolongo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy.
| |
Collapse
|
3
|
Iori S, Pauletto M, Bassan I, Bonsembiante F, Gelain ME, Bardhi A, Barbarossa A, Zaghini A, Dacasto M, Giantin M. Deepening the Whole Transcriptomics of Bovine Liver Cells Exposed to AFB1: A Spotlight on Toll-like Receptor 2. Toxins (Basel) 2022; 14:toxins14070504. [PMID: 35878242 PMCID: PMC9323327 DOI: 10.3390/toxins14070504] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 12/13/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a food contaminant metabolized mostly in the liver and leading to hepatic damage. Livestock species are differently susceptible to AFB1, but the underlying mechanisms of toxicity have not yet been fully investigated, especially in ruminants. Thus, the aim of the present study was to better characterize the molecular mechanism by which AFB1 exerts hepatotoxicity in cattle. The bovine fetal hepatocyte cell line (BFH12) was exposed for 48 h to three different AFB1 concentrations (0.9 µM, 1.8 µM and 3.6 µM). Whole-transcriptomic changes were measured by RNA-seq analysis, showing significant differences in the expression of genes mainly involved in inflammatory response, oxidative stress, drug metabolism, apoptosis and cancer. As a confirmatory step, post-translational investigations on genes of interest were implemented. Cell death associated with necrosis rather than apoptosis events was noted. As far as the toxicity mechanism is concerned, a molecular pathway linking inflammatory response and oxidative stress was postulated. Toll-Like Receptor 2 (TLR2) activation, consequent to AFB1 exposure, triggers an intracellular signaling cascade involving a kinase (p38β MAPK), which in turn allows the nuclear translocation of the activator protein-1 (AP-1) and NF-κB, finally leading to the release of pro-inflammatory cytokines. Furthermore, a p38β MAPK negative role in cytoprotective genes regulation was postulated. Overall, our investigations improved the actual knowledge on the molecular effects of this worldwide relevant natural toxin in cattle.
Collapse
Affiliation(s)
- Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
| | - Irene Bassan
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
| | - Federico Bonsembiante
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
| | - Anisa Bardhi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (A.B.); (A.Z.)
| | - Andrea Barbarossa
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (A.B.); (A.Z.)
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (A.B.); (A.Z.)
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
- Correspondence: ; Tel.: +39-049-827-2946
| |
Collapse
|
4
|
Reichelt K, Niebisch AM, Kacza J, Schoeniger A, Fuhrmann H. The Bovine Hepatic Cell Line BFH12 as a Possible Model for Hepatosteatosis in Dairy Cows. Front Vet Sci 2022; 9:840202. [PMID: 35359674 PMCID: PMC8963807 DOI: 10.3389/fvets.2022.840202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatosteatosis is a common metabolic disorder of dairy cows, especially during early lactation. Currently, there are a few models of bovine hepatic steatosis available, including primary hepatocytes, liver slices, and animal models. Studies that elucidate the influence of single fatty acids on lipid classes, fatty acid pattern, gene expression, and phenotypic changes are still limited. Hence, we investigated the suitability of the fetal bovine hepatocyte-derived cell line BFH12 as a model for hepatosteatosis. To create a steatotic environment, we treated BFH12 with stearic acid, palmitic acid, or oleic acid in non-toxic doses. Thin-layer chromatography and gas chromatography were used to analyze lipid classes and fatty acid pattern, and qPCR was used to quantify gene expression of relevant target genes. Lipid droplets were visualized with confocal laser scanning microscopy and evaluated for number and size. Treatment with oleic acid increased triglycerides, as well as lipid droplet count per cell and upregulated carnitine palmitoyl transferase 1, which correlates with findings of in vivo models. Oleic acid was largely incorporated into triglycerides, phospholipids, and non-esterified fatty acids. Stearic acid was found mainly in non-esterified fatty acids and triglycerides, whereas palmitic acid was mainly desaturated to palmitoleic acid. All three fatty acids downregulated stearyl-CoA-desaturase 1. In conclusion, BFH12 can acquire a steatotic phenotype by incorporating and accumulating fatty acids. Oleic acid is particularly suitable to produce hepatosteatosis. Therefore, BFH12 may be a useful in vitro model to study bovine hepatosteatosis and its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Kristin Reichelt
- Faculty of Veterinary Medicine, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
- *Correspondence: Kristin Reichelt
| | - Anna M. Niebisch
- Faculty of Veterinary Medicine, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Johannes Kacza
- BioImaging Core Facility, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Axel Schoeniger
- Faculty of Veterinary Medicine, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Herbert Fuhrmann
- Faculty of Veterinary Medicine, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| |
Collapse
|
5
|
Discovering the Protective Effects of Resveratrol on Aflatoxin B1-Induced Toxicity: A Whole Transcriptomic Study in a Bovine Hepatocyte Cell Line. Antioxidants (Basel) 2021; 10:antiox10081225. [PMID: 34439473 PMCID: PMC8388899 DOI: 10.3390/antiox10081225] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a natural feed and food contaminant classified as a group I carcinogen for humans. In the dairy industry, AFB1 and its derivative, AFM1, are of concern for the related economic losses and their possible presence in milk and dairy food products. Among its toxic effects, AFB1 can cause oxidative stress. Thus, dietary supplementation with natural antioxidants has been considered among the strategies to mitigate AFB1 presence and its toxicity. Here, the protective role of resveratrol (R) has been investigated in a foetal bovine hepatocyte cell line (BFH12) exposed to AFB1, by measuring cytotoxicity, transcriptional changes (RNA sequencing), and targeted post-transcriptional modifications (lipid peroxidation, NQO1 and CYP3A enzymatic activity). Resveratrol reversed the AFB1-dependent cytotoxicity. As for gene expression, when administered alone, R induced neglectable changes in BFH12 cells. Conversely, when comparing AFB1-exposed cells with those co-incubated with R+AFB1, greater transcriptional variations were observed (i.e., 840 DEGs). Functional analyses revealed that several significant genes were involved in lipid biosynthesis, response to external stimulus, drug metabolism, and inflammatory response. As for NQO1 and CYP3A activities and lipid peroxidation, R significantly reverted variations induced by AFB1, mostly corroborating and/or completing transcriptional data. Outcomes of the present study provide new knowledge about key molecular mechanisms involved in R antioxidant-mediated protection against AFB1 toxicity.
Collapse
|
6
|
Pauletto M, Giantin M, Tolosi R, Bassan I, Barbarossa A, Zaghini A, Dacasto M. Curcumin Mitigates AFB1-Induced Hepatic Toxicity by Triggering Cattle Antioxidant and Anti-inflammatory Pathways: A Whole Transcriptomic In Vitro Study. Antioxidants (Basel) 2020; 9:antiox9111059. [PMID: 33137966 PMCID: PMC7692341 DOI: 10.3390/antiox9111059] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Aflatoxin B1 (AFB1) toxicity in livestock and human beings is a major economic and health concern. Natural polyphenolic substances with antioxidant properties have proven to be effective in ameliorating AFB1-induced toxicity. Here we assessed the potential anti-AFB1 activity of curcumin (pure curcumin, C, and curcumin from Curcuma longa, CL) in a bovine fetal hepatocyte-derived cell line (BFH12). First, we measured viability of cells exposed to AFB1 in presence or absence of curcumin treatment. Then, we explored all the transcriptional changes occurring in AFB1-exposed cells cotreated with curcumin. Results demonstrated that curcumin is effective in reducing AFB1-induced toxicity, decreasing cells mortality by approximately 30%. C and CL induced similar transcriptional changes in BFH12 exposed to AFB1, yet C treatment resulted in a larger number of significant genes compared to CL. The mitigating effects of curcuminoids towards AFB1 toxicity were mainly related to molecular pathways associated with antioxidant and anti-inflammatory response, cancer, and drug metabolism. Investigating mRNA changes induced by curcumin in cattle BFH12 cells exposed to AFB1 will help us to better characterize possible tools to reduce its consequences in this susceptible and economically important food-producing species.
Collapse
Affiliation(s)
- Marianna Pauletto
- Division of Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padova, viale dell’Università 16, Legnaro, 35020 Padova, Italy; (M.P.); (M.G.); (R.T.); (I.B.)
| | - Mery Giantin
- Division of Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padova, viale dell’Università 16, Legnaro, 35020 Padova, Italy; (M.P.); (M.G.); (R.T.); (I.B.)
| | - Roberta Tolosi
- Division of Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padova, viale dell’Università 16, Legnaro, 35020 Padova, Italy; (M.P.); (M.G.); (R.T.); (I.B.)
| | - Irene Bassan
- Division of Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padova, viale dell’Università 16, Legnaro, 35020 Padova, Italy; (M.P.); (M.G.); (R.T.); (I.B.)
| | - Andrea Barbarossa
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (A.Z.)
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (A.Z.)
| | - Mauro Dacasto
- Division of Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padova, viale dell’Università 16, Legnaro, 35020 Padova, Italy; (M.P.); (M.G.); (R.T.); (I.B.)
- Correspondence: ; Tel.: +39-049-827-2935
| |
Collapse
|
7
|
Busato S, Bionaz M. The interplay between non-esterified fatty acids and bovine peroxisome proliferator-activated receptors: results of an in vitro hybrid approach. J Anim Sci Biotechnol 2020; 11:91. [PMID: 32793344 PMCID: PMC7419192 DOI: 10.1186/s40104-020-00481-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Background In dairy cows circulating non-esterified fatty acids (NEFA) increase early post-partum while liver and other tissues undergo adaptation to greater lipid metabolism, mainly regulated by peroxisome proliferator-activated receptors (PPAR). PPAR are activated by fatty acids (FA), but it remains to be demonstrated that circulating NEFA or dietary FA activate bovine PPAR. We hypothesized that circulating NEFA and dietary FA activate PPAR in dairy cows. Methods The dose-response activation of PPAR by NEFA or dietary FA was assessed using HP300e digital dispenser and luciferase reporter in several bovine cell types. Cells were treated with blood plasma isolated from Jersey cows before and after parturition, NEFA isolated from the blood plasma, FA released from lipoproteins using milk lipoprotein lipase (LPL), and palmitic acid (C16:0). Effect on each PPAR isotype was assessed using specific synthetic inhibitors. Results NEFA isolated from blood serum activate PPAR linearly up to ~ 4-fold at 400 μmol/L in MAC-T cells but had cytotoxic effect. Addition of albumin to the culture media decreases cytotoxic effects of NEFA but also PPAR activation by ~ 2-fold. Treating cells with serum from peripartum cows reveals that much of the PPAR activation can be explained by the amount of NEFA in the serum (R2 = 0.91) and that the response to serum NEFA follows a quadratic tendency, with peak activation around 1.4 mmol/L. Analysis of PPAR activation by serum in MAC-T, BFH-12 and BPAEC cells revealed that most of the activation is explained by the activity of PPARδ and PPARγ, but not PPARα. Palmitic acid activated PPAR when added in culture media or blood serum but the activation was limited to PPARδ and PPARα and the response was nil in serum from post-partum cows. The addition of LPL to the serum increased > 1.5-fold PPAR activation. Conclusion Our results support dose-dependent activation of PPAR by circulating NEFA in bovine, specifically δ and γ isotypes. Data also support the possibility of increasing PPAR activation by dietary FA; however, this nutrigenomics approach maybe only effective in pre-partum but not post-partum cows.
Collapse
Affiliation(s)
- Sebastiano Busato
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR USA
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR USA
| |
Collapse
|
8
|
Insights into Aflatoxin B1 Toxicity in Cattle: An In Vitro Whole-Transcriptomic Approach. Toxins (Basel) 2020; 12:toxins12070429. [PMID: 32610656 PMCID: PMC7404968 DOI: 10.3390/toxins12070429] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Aflatoxins, and particularly aflatoxin B1 (AFB1), are toxic mycotoxins to humans and farm animal species, resulting in acute and chronic toxicities. At present, AFB1 is still considered a global concern with negative impacts on health, the economy, and social life. In farm animals, exposure to AFB1-contaminated feed may cause several untoward effects, liver damage being one of the most devastating ones. In the present study, we assessed in vitro the transcriptional changes caused by AFB1 in a bovine fetal hepatocyte-derived cell line (BFH12). To boost the cellular response to AFB1, cells were pre-treated with the co-planar PCB 3,3′,4,4′,5-pentachlorobiphenyl (PCB126), a known aryl hydrocarbon receptor agonist. Three experimental groups were considered: cells exposed to the vehicle only, to PCB126, and to PCB126 and AFB1. A total of nine RNA-seq libraries (three replicates/group) were constructed and sequenced. The differential expression analysis showed that PCB126 induced only small transcriptional changes. On the contrary, AFB1 deeply affected the cell transcriptome, the majority of significant genes being associated with cancer, cellular damage and apoptosis, inflammation, bioactivation, and detoxification pathways. Investigating mRNA perturbations induced by AFB1 in cattle BFH12 cells will help us to better understand AFB1 toxicodynamics in this susceptible and economically important food-producing species.
Collapse
|
9
|
Yoshioka M, Takenouchi T, Kitani H, Guruge KS, Yamanaka N. Synergistic induction of drug-metabolizing enzymes in co-cultures of bovine hepatocytic and sinusoidal cell lines. In Vitro Cell Dev Biol Anim 2019; 56:2-9. [PMID: 31722089 DOI: 10.1007/s11626-019-00408-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/25/2019] [Indexed: 11/26/2022]
Abstract
Hepatocyte-derived cell lines provide useful experimental systems for studying liver metabolism. Unlike human and rodents, few hepatocyte-derived cell lines have been generated from cattle. Here, we established two immortalized bovine hepatocyte-derived cell lines (BH4 and BH5) via transfection with a SV40 large T-antigen construct. Morphological and immunocytochemical analyses revealed that BH4 and BH5 originated from hepatocytes and biliary-epithelial cells, respectively. A potent carcinogen, 3-methylcholanthrene (3-MC), upregulated gene expression of cytochrome P450 (CYP)1A1, CYP1A2, and CYP1B1 in BH4 and BH5, but only to levels less than one-fifteenth of those in primary cultured bovine hepatocytes. Phenobarbital (PB) also increased expression levels of CYP2B6, CYP2C18, and CYP3A4 in BH4 and BH, but at a lower level than 3-MC. By contrast, when BH4 or BH5 was co-cultured with previously established bovine liver sinusoidal cell lines and treated with 3-MC, the gene expression levels of CYP1A1, CYP1A2, and CYP1B1 increased by 38~290%, compared with those in BH4 or BH5 cells cultured alone. PB-treated co-cultures of BH4 or BH5 cells and liver sinusoidal cell lines also showed synergistic increases in CYP2B6 and CYP2C18 expression. Together, the results suggest that these co-cultures could provide an in vitro model for investigations into pharmacological and toxicological properties of drugs in cattle liver.
Collapse
Affiliation(s)
- Miyako Yoshioka
- Pathology and Pathophysiology Research Division, National Institute of Animal Health, NARO, Kannondai 3-1-5, Tsukuba, Ibaraki, 305-0856, Japan.
| | - Takato Takenouchi
- Division of Animal Sciences, Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Hiroshi Kitani
- Division of Animal Sciences, Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Keerthi S Guruge
- Pathology and Pathophysiology Research Division, National Institute of Animal Health, NARO, Kannondai 3-1-5, Tsukuba, Ibaraki, 305-0856, Japan
| | - Noriko Yamanaka
- Pathology and Pathophysiology Research Division, National Institute of Animal Health, NARO, Kannondai 3-1-5, Tsukuba, Ibaraki, 305-0856, Japan
| |
Collapse
|
10
|
Witte S, Brockelmann Y, Haeger JD, Schmicke M. Establishing a model of primary bovine hepatocytes with responsive growth hormone receptor expression. J Dairy Sci 2019; 102:7522-7535. [PMID: 31155243 DOI: 10.3168/jds.2018-15873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/03/2019] [Indexed: 11/19/2022]
Abstract
The liver becomes resistant to growth hormone before parturition in dairy cows (uncoupling of the somatotropic axis). However, the mechanism of growth hormone insensitivity has not been fully described. The aim of the present study was to improve a previous model of adult bovine hepatocytes in a sandwich culture system to ensure growth hormone receptor (GHR) expression. First, we modified the protocol for hepatocyte retrieval and tested the effect of short (18 min) and long (up to 30 min) warm ischemia on hepatocyte viability. Second, we used medium additives that affect GHR expression in vivo-insulin (INS), dexamethasone (DEX), both (INS+DEX), or no hormone additives (CTRL)-to ensure the functionality of hepatocytes, as measured by lactate dehydrogenase activity and urea concentration in the medium. We also used reverse transcriptase PCR of hepatocytes to evaluate expression of albumin (ALB), hepatocyte nuclear factor 4α (HNF4A), nuclear factor-κ-B-inhibitor α (NFKBIA), cytosolic phosphoenolpyruvate carboxykinase (PCK1), and vimentin (VIM) mRNA. Moreover, we analyzed the expression of GHRtot (GHR), GHR1A, insulin-like growth factor-1 (IGF1), and IGF binding protein-2 (IGFBP2) in response to exposure to media with the different compositions. Modification of the protocol (changes in rinsing and perfusion times, buffer composition, and the volume and standardization of collagenase) led to increased cell counts and cell viability. Short warm ischemia with the modified protocol significantly increased cell count (4.7 × 107 ± 1.9 × 107 vs. 3.5 × 106 ± 1.5 × 106 vital cells/g of liver) and viability (79.1 ± 8.4 vs. 37.1 ± 8.9%). Therefore, we gathered hepatocytes from the liver after short warm ischemia with the modified protocol. For these hepatocytes, lactate dehydrogenase activity was lower in media with INS and with DEX than in media with INS+DEX or CTRL; urea concentrations were highest at d 4 for INS+DEX. As well, HNF4A and ALB were more highly expressed in hepatocytes cultured with INS and INS+DEX than in those cultured with DEX or CTRL, and the substitution of DEX suppressed VIM and NFKBIA expression but increased PCK1 expression. The expression of GHR, GHR1A, and IGF1 was suppressed by dexamethasone (DEX and INS+DEX), whereas INS distinctly increased GHR, GHR1A, and IGF1 mRNA expression. Hepatocytes in a sandwich culture showed influenceable GHR expression; this study provides a model that can be used in studies examining factors that influence the expression and signal transduction of GHR in dairy cows.
Collapse
Affiliation(s)
- S Witte
- Clinic for Cattle, Endocrinology Laboratory, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Germany
| | - Y Brockelmann
- Clinic for Cattle, Endocrinology Laboratory, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Germany
| | - J-D Haeger
- Institute for Anatomy, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Germany
| | - M Schmicke
- Clinic for Cattle, Endocrinology Laboratory, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Germany.
| |
Collapse
|
11
|
Giantin M, Küblbeck J, Zancanella V, Prantner V, Sansonetti F, Schoeniger A, Tolosi R, Guerra G, Da Ros S, Dacasto M, Honkakoski P. DNA elements for constitutive androstane receptor- and pregnane X receptor-mediated regulation of bovine CYP3A28 gene. PLoS One 2019; 14:e0214338. [PMID: 30908543 PMCID: PMC6433341 DOI: 10.1371/journal.pone.0214338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
The regulation of cytochrome P450 3A (CYP3A) enzymes is established in humans, but molecular mechanisms of its basal and xenobiotic-mediated regulation in cattle are still unknown. Here, ~10 kbp of the bovine CYP3A28 gene promoter were cloned and sequenced, and putative transcription factor binding sites were predicted. The CYP3A28 proximal promoter (PP; -284/+71 bp) contained DNA elements conserved among species. Co-transfection of bovine nuclear receptors (NRs) pregnane X and constitutive androstane receptor (bPXR and bCAR) with various CYP3A28 promoter constructs into hepatoma cell lines identified two main regions, the PP and the distal fragment F3 (-6899/-4937 bp), that were responsive to bPXR (both) and bCAR (F3 fragment only). Site-directed mutagenesis and deletion of NR motif ER6, hepatocyte nuclear factor 1 (HNF-1) and HNF-4 binding sites in the PP suggested either the involvement of ER6 element in bPXR-mediated activation or the cooperation between bPXR and liver-enriched transcription factors (LETFs) in PP transactivation. A putative DR5 element within the F3 fragment was involved in bCAR-mediated PP+F3 transactivation. Although DNA enrichment by anti-human NR antibodies was quite low, ChIP investigations in control and RU486-treated BFH12 cells, suggested that retinoid X receptor α (RXRα) bound to ER6 and DR5 motifs and its recruitment was enhanced by RU486 treatment. The DR5 element seemed to be recognized mainly by bCAR, while no clear-cut results were obtained for bPXR. Present results point to species-differences in CYP3A regulation and the complexity of bovine CYP3A28 regulatory elements, but further confirmatory studies are needed.
Collapse
Affiliation(s)
- Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
- * E-mail:
| | - Jenni Küblbeck
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Vanessa Zancanella
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Viktoria Prantner
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Fabiana Sansonetti
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Axel Schoeniger
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Roberta Tolosi
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Giorgia Guerra
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Silvia Da Ros
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Paavo Honkakoski
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
12
|
Gleich A, Kaiser B, Honscha W, Fuhrmann H, Schoeniger A. Evaluation of the hepatocyte-derived cell line BFH12 as an in vitro model for bovine biotransformation. Cytotechnology 2019; 71:231-244. [PMID: 30617848 DOI: 10.1007/s10616-018-0279-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 11/08/2018] [Indexed: 12/17/2022] Open
Abstract
The knowledge of drug metabolising enzymes (DMEs) in cattle is rather limited. The capability of the bovine foetal hepatocyte-derived cell line BFH12 to serve as model for biotransformation was evaluated. Gene expression analysis of DMEs was performed by reverse transcription PCR (RT-PCR). The presence of efflux transporters was visualised by immunocytochemistry, and functional induction of cytochrome P450 (CYP) 1A was assessed by the ethoxyresorufin-O-deethylase (EROD) assay. The production of bile acids was measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). RT-PCR revealed the expression of cytochromes 1A1, 1A2, 3A4 and phase II enzymes UGT1A1, UGT1A6 and GSTM1. Immunofluorescence demonstrated efflux transporters ABCG2 and ABCC1. The EROD assay revealed a dose-dependent CYP1A induction after treatment with benzo[a]pyrene (BP). LC-MS/MS analysis of cell culture supernatants showed the production of bile acids including taurocholic acid, tauro-chenodeoxycholic acid, taurodeoxycholic acid and taurolithocholic acid. The results strongly suggest the applicability of the cell line BFH12 for subsequent experiments in the emerging field of bovine biotransformation.
Collapse
Affiliation(s)
- Alexander Gleich
- Institute of Biochemistry, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Bastian Kaiser
- Institute of Veterinary Physiology, University of Leipzig, An den Tierkliniken 7, 04103, Leipzig, Germany
| | - Walther Honscha
- Institute of Veterinary Pharmacology and Toxicology, University of Leipzig, An den Tierkliniken 15, 04103, Leipzig, Germany
| | - Herbert Fuhrmann
- Institute of Biochemistry, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Axel Schoeniger
- Institute of Biochemistry, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany.
| |
Collapse
|
13
|
Mutational Analysis of the Bovine Hepacivirus Internal Ribosome Entry Site. J Virol 2018; 92:JVI.01974-17. [PMID: 29769341 DOI: 10.1128/jvi.01974-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/11/2018] [Indexed: 12/19/2022] Open
Abstract
In recent years, hepatitis C virus (HCV)-related viruses were identified in several species, including dogs, horses, bats, and rodents. In addition, a novel virus of the genus Hepacivirus has been discovered in bovine samples and was termed bovine hepacivirus (BovHepV). Prediction of the BovHepV internal ribosome entry site (IRES) structure revealed strong similarities to the HCV IRES structure comprising domains II, IIIabcde, pseudoknot IIIf, and IV with the initiation codon AUG. Unlike HCV, only one microRNA-122 (miR-122) binding site could be identified in the BovHepV 5' nontranslated region. In this study, we analyzed the necessity of BovHepV IRES domains to initiate translation and investigated possible interactions between the IRES and core coding sequences by using a dual luciferase reporter assay. Our results suggest that such long-range interactions within the viral genome can affect IRES-driven translation. Moreover, the significance of a possible miR-122 binding to the BovHepV IRES was investigated. When analyzing translation in human Huh-7 cells with large amounts of endogenous miR-122, introduction of point mutations to the miR-122 binding site resulted in reduced translation efficiency. Similar results were observed in HeLa cells after substitution of miR-122. Nevertheless, the absence of pronounced effects in a bovine hepatocyte cell line expressing hardly any miR-122 as well suggests additional functions of this host factor in virus replication.IMPORTANCE Several members of the family Flaviviridae, including HCV, have adapted cap-independent translation strategies to overcome canonical eukaryotic translation pathways and use cis-acting RNA-elements, designated viral internal ribosome entry sites (IRES), to initiate translation. Although novel hepaciviruses have been identified in different animal species, only limited information is available on their biology on molecular level. Therefore, our aim was a fundamental analysis of BovHepV IRES functions. The findings which show that functional IRES elements are also crucial for BovHepV translation expand our knowledge on molecular mechanism of hepacivirus propagation. We also studied the possible effects of one major host factor implicated in HCV pathogenesis, miR-122. The results of mutational analyses suggested that miR-122 enhances virus translation mediated by BovHepV IRES.
Collapse
|
14
|
Transcriptomic characterization of bovine primary cultured hepatocytes; a cross-comparison with a bovine liver and the Madin-Darby bovine kidney cells. Res Vet Sci 2017; 113:40-49. [PMID: 28863307 DOI: 10.1016/j.rvsc.2017.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/07/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023]
Abstract
Bovine primary cultured hepatocytes (CHs) are widely used in vitro models for liver toxicity testing. However, little is known about their whole-transcriptome profile and its resemblance to the normal liver tissue. In the present study, we profiled - by microarray - the whole-transcriptome of bovine CHs (n=4) and compared it with the transcriptomic landscape of control liver samples (n=8), as well the Madin-Darby bovine kidney (MDBK) cells (n=4). Compared with liver tissue, the bovine CHs relatively expressed (fold change >2, P<0.05) about 2155 and 2073 transcripts at a lower and higher abundance, respectively. Of those expressed at a lower abundance, many were drug biotransformation enzyme-coding genes, such as the cytochrome P450 family (CYPs), sulfotransferases, methyltransferases, and glutathione S-transferases. Also, several drug transporters and solute carriers were expressed at a lower abundance in bovine CHs. 'Drug metabolism', 'PPAR signaling', and 'metabolism of xenobiotics by CYPs' were among the most negatively-enriched pathways in bovine CHs compared with liver. A qPCR cross-validation using 8 selected genes evidenced a high correlation (r=0.95, P=0.001) with the corresponding microarray results. Although from a kidney origin, and albeit to a lower extent compared to bovine CHs, the MDBK cells showed a basal expression of many CYP-coding genes. Our study provides a whole-transcriptome-based evidence for the bovine CHs and hepatic tissue resemblance. Overall, the bovine CHs' transcriptomic profile might render it unreliable as an in vitro model to study drug metabolism.
Collapse
|