1
|
Du J, Zhang S, Zhao J, Li S, Chen W, Cui H, Su Y. Draxin inhibits chick trunk neural crest delamination and migration by increasing cell adhesion. Dev Growth Differ 2021; 63:501-515. [PMID: 34611891 DOI: 10.1111/dgd.12754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/12/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022]
Abstract
The neural crest is a multipotent cell population that migrates extensively to play important roles during embryonic development. After acquiring motility, trunk neural crest cells delaminate from the spinal cord and migrate to various regions of the body. Several cellular adhesion molecules, such as vinculin, are involved in the regulation of neural crest delamination and migration. In the present study, we found that draxin could inhibit delamination and migration of neural crest cells from the chick spinal cord and abnormal aggregation of the migrating neural crest cells. In the presence of draxin, the resuspended neural crest regained its adhesive ability such that it was significantly increased. Overexpression of draxin caused increased vinculin expression in vivo. Our data indicate that draxin might control delamination and migration of chick trunk neural crest by increasing cell adhesion.
Collapse
Affiliation(s)
- Juan Du
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China.,Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, China
| | - Sanbing Zhang
- Department of Hand and Foot Surgery, The Third Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Jiqian Zhao
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Sha Li
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China.,Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, China
| | - Wenyong Chen
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China.,Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, China
| | - Yuhong Su
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China.,Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Hutchins EJ, Piacentino ML, Bronner ME. Transcriptomic Identification of Draxin-Responsive Targets During Cranial Neural Crest EMT. Front Physiol 2021; 12:624037. [PMID: 33613313 PMCID: PMC7886793 DOI: 10.3389/fphys.2021.624037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/07/2021] [Indexed: 01/09/2023] Open
Abstract
Canonical Wnt signaling plays an essential role in proper craniofacial morphogenesis, at least partially due to regulation of various aspects of cranial neural crest development. In an effort to gain insight into the etiology of craniofacial abnormalities resulting from Wnt signaling and/or cranial neural crest dysfunction, we sought to identify Wnt-responsive targets during chick cranial neural crest development. To this end, we leveraged overexpression of a canonical Wnt antagonist, Draxin, in conjunction with RNA-sequencing of cranial neural crest cells that have just activated their epithelial-mesenchymal transition (EMT) program. Through differential expression analysis, gene list functional annotation, hybridization chain reaction (HCR), and quantitative reverse transcription polymerase chain reaction (RT-qPCR), we validated a novel downstream target of canonical Wnt signaling in cranial neural crest - RHOB - and identified possible signaling pathway crosstalk underlying cranial neural crest migration. The results reveal novel putative targets of canonical Wnt signaling during cranial neural crest EMT and highlight important intersections across signaling pathways involved in craniofacial development.
Collapse
Affiliation(s)
| | | | - Marianne E. Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
3
|
Draxin-mediated Regulation of Granule Cell Progenitor Differentiation in the Postnatal Hippocampal Dentate Gyrus. Neuroscience 2020; 431:184-192. [PMID: 32081722 DOI: 10.1016/j.neuroscience.2020.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 02/03/2023]
Abstract
The hippocampus is characterized by the presence of life-long neurogenesis. To elucidate the molecular mechanism regulating hippocampal neurogenesis, we studied the functions of the chemorepellent Draxin in neuronal proliferation and differentiation in the postnatal dentate gyrus. The present in vivo cell labeling and fate tracking analyses revealed enhanced differentiation of hippocampal neural stem and progenitor cells (hNSPCs) in the subgranular zone (SGZ) of Draxin-deficient mice. We observed a reduction in the number of BrdU-pulse labeled or Ki-67 immunopositive SGZ cells in the mutant mice. However, Draxin deficiency did not affect cell cycle duration of SGZ cells. In situ hybridization analysis indicated that the receptor component of the canonical Wnt pathway, Lrp6, is expressed in SGZ cells, including Nestin and Sox2 double-positive hNSPCs. Taken together with the previous finding that Draxin interacts physically with Lrp6, we postulate that Draxin plays a pivotal role in the regulation of Wnt-driven hNSPC differentiation to modulate the rate of neuronal differentiation in the progenitor population.
Collapse
|
4
|
Delloye-Bourgeois C, Castellani V. Hijacking of Embryonic Programs by Neural Crest-Derived Neuroblastoma: From Physiological Migration to Metastatic Dissemination. Front Mol Neurosci 2019; 12:52. [PMID: 30881286 PMCID: PMC6405627 DOI: 10.3389/fnmol.2019.00052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
In the developing organism, complex molecular programs orchestrate the generation of cells in adequate numbers, drive them to migrate along the correct pathways towards appropriate territories, eliminate superfluous cells, and induce terminal differentiation of survivors into the appropriate cell-types. Despite strict controls constraining developmental processes, malignancies can emerge in still immature organisms. This is the case of neuroblastoma (NB), a highly heterogeneous disease, predominantly affecting children before the age of 5 years. Highly metastatic forms represent half of the cases and are diagnosed when disseminated foci are detectable. NB arise from a transient population of embryonic cells, the neural crest (NC), and especially NC committed to the establishment of the sympatho-adrenal tissues. The NC is generated at the dorsal edge of the neural tube (NT) of the vertebrate embryo, under the action of NC specifier gene programs. NC cells (NCCs) undergo an epithelial to mesenchymal transition, and engage on a remarkable journey in the developing embryo, contributing to a plethora of cell-types and tissues. Various NCC sub-populations and derived lineages adopt specific migratory behaviors, moving individually as well as collectively, exploiting the different embryonic substrates they encounter along their path. Here we discuss how the specific features of NCC in development are re-iterated during NB metastatic behaviors.
Collapse
Affiliation(s)
- Céline Delloye-Bourgeois
- University of Lyon, University of Lyon 1 Claude Bernard Lyon 1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, Lyon, France
| | - Valérie Castellani
- University of Lyon, University of Lyon 1 Claude Bernard Lyon 1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, Lyon, France
| |
Collapse
|
5
|
Dyson L, Holmes A, Li A, Kulesa PM. A chemotactic model of trunk neural crest cell migration. Genesis 2018; 56:e23239. [PMID: 30133140 DOI: 10.1002/dvg.23239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/10/2018] [Accepted: 07/14/2018] [Indexed: 11/11/2022]
Abstract
Trunk neural crest cells follow a common ventral migratory pathway but are distributed into two distinct locations to form discrete sympathetic and dorsal root ganglia along the vertebrate axis. Although fluorescent cell labeling and time-lapse studies have recorded complex trunk neural crest cell migratory behaviors, the signals that underlie this dynamic patterning remain unclear. The absence of molecular information has led to a number of mechanistic hypotheses for trunk neural crest cell migration. Here, we review recent data in support of three distinct mechanisms of trunk neural crest cell migration and develop and simulate a computational model based on chemotactic signaling. We show that by integrating the timing and spatial location of multiple chemotactic signals, trunk neural crest cells may be accurately positioned into two distinct targets that correspond to the sympathetic and dorsal root ganglia. In doing so, we honor the contributions of Wilhelm His to his identification of the neural crest and extend the observations of His and others to better understand a complex question in neural crest cell biology.
Collapse
Affiliation(s)
- Louise Dyson
- Mathematics Institute, University of Warwick, Coventry, United Kingdom, CV4 7AL.,School of Life Sciences, University of Warwick, Coventry, UK, CV4 7AL
| | - Alexander Holmes
- Mathematics Institute, University of Warwick, Coventry, United Kingdom, CV4 7AL
| | - Ang Li
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, Missouri.,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas
| |
Collapse
|
6
|
Tawarayama H, Yamada H, Shinmyo Y, Tanaka H, Ikawa S. The chemorepellent draxin is involved in hippocampal mossy fiber projection. Biochem Biophys Res Commun 2018; 500:217-223. [PMID: 29634927 DOI: 10.1016/j.bbrc.2018.04.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/06/2018] [Indexed: 02/05/2023]
Abstract
Lamina-specific afferent innervation of the mammalian hippocampus is critical for its function. We investigated the relevance of the chemorepellent draxin to the laminar projections of three principal hippocampal afferents: mossy fibers, entorhinal, and associational/commissural fibers. We observed that draxin deficiency led to abnormal projection of mossy fibers but not other afferents. Immunohistochemical analysis indicated that draxin is expressed in the dentate gyrus and cornu ammonis (CA) 3 at postnatal day 0, when dentate granule cells begin to extend mossy fibers towards CA3. Furthermore, a neurite growth assay using dissociated cells of the neonatal dentate gyrus revealed that draxin inhibited the growth of calbindin-D28k-expressing mossy fibers in vitro. Taken together, we conclude that draxin is a key molecule in the regulation of mossy fiber projections.
Collapse
Affiliation(s)
- Hiroshi Tawarayama
- Department of Developmental Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; Department of Project Programs, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan; Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan.
| | - Hirohisa Yamada
- Department of Developmental Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yohei Shinmyo
- Department of Developmental Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hideaki Tanaka
- Department of Developmental Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shuntaro Ikawa
- Department of Project Programs, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
7
|
Draxin regulates hippocampal neurogenesis in the postnatal dentate gyrus by inhibiting DCC-induced apoptosis. Sci Rep 2018; 8:840. [PMID: 29339781 PMCID: PMC5770412 DOI: 10.1038/s41598-018-19346-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/27/2017] [Indexed: 12/01/2022] Open
Abstract
Hippocampal neurogenesis in the dentate gyrus (DG) is controlled by diffusible molecules that modulate neurogenic processes, including cell proliferation, differentiation and survival. To elucidate the mechanisms underlying hippocampal neurogenesis, we investigated the function of draxin, originally identified as a neural chemorepellent, in the regulation of neuronal survival in the DG. Draxin was expressed in Tbr2 (+) late progenitors and NeuroD1 (+) neuroblasts in the dentate granule cell lineage, whereas expression of its receptor DCC (deleted in colorectal cancer) was mainly detectable in neuroblasts. Our phenotypic analysis revealed that draxin deficiency led to enhanced apoptosis of DCC-expressing neuroblasts in the neurogenic areas. Furthermore, in vitro assays using a hippocampal neural stem/progenitor cell (HNSPC) line indicated that draxin inhibited apoptosis in differentiating HNSPCs, which express DCC. Taken together, we postulate that draxin plays a pivotal role in postnatal DG neurogenesis as a dependence receptor ligand for DCC to maintain and promote survival of neuroblasts.
Collapse
|