1
|
Shimizu M, Tachikawa S, Saitoh N, Nakazono K, Yu-Jung L, Suga M, Ohnuma K. Thalidomide affects limb formation and multiple myeloma related genes in human induced pluripotent stem cells and their mesoderm differentiation. Biochem Biophys Rep 2021; 26:100978. [PMID: 33763605 PMCID: PMC7973312 DOI: 10.1016/j.bbrep.2021.100978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/28/2022] Open
Abstract
Although thalidomide is highly teratogenic, it has been prescribed for treating multiple myeloma and Hansen's disease. However, its mechanism of action is not fully understood. Here, we employed a reverse transcription quantitative PCR array to measure the expression of 84 genes in human induced pluripotent stem cells (hiPSCs) and their mesodermal differentiation. Thalidomide altered the expression of undifferentiated marker genes in both cell types. Thalidomide affected more genes in the mesoderm than in the hiPSCs. Ectoderm genes were upregulated but mesendoderm genes were downregulated by thalidomide during mesoderm induction, suggesting that thalidomide altered mesoderm differentiation. We found that FABP7 (fatty acid binding protein 7) was dramatically downregulated in the hiPSCs. FABP is related to retinoic acid, which is important signaling for limb formation. Moreover, thalidomide altered the expression of the genes involved in TGF-β signaling, limb formation, and multiple myeloma, which are related to thalidomide-induced malformations and medication. In summary, iPSCs can serve as useful tools to elucidate the mechanisms underlying thalidomide malformations in vitro. Thalidomide downregulated FABP7, a fatty acid binding protein (FABP) cording gene. FABP is related to retinoic acid, which is important signaling for limb formation. Thalidomide treatment affected the expression of limb formation related genes. Thalidomide treatment affected 5 genes related to multiple myeloma. Thalidomide upregulated ectoderm but downregulated mesendoderm markers in mesoderm.
Collapse
Affiliation(s)
- Maho Shimizu
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Saoko Tachikawa
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Nagatsuki Saitoh
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Kohei Nakazono
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Liu Yu-Jung
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Mika Suga
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Kiyoshi Ohnuma
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan.,Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| |
Collapse
|
2
|
Involvement of lysophosphatidic acid-induced astrocyte activation underlying the maintenance of partial sciatic nerve injury-induced neuropathic pain. Pain 2019; 159:2170-2178. [PMID: 29939962 DOI: 10.1097/j.pain.0000000000001316] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have previously demonstrated that lysophosphatidic acid (LPA) plays key roles in the initial mechanisms for neuropathic pain (NeuP) development. Here, we examined whether LPA receptor mechanisms and LPA production are related to the glial activation at a late stage after partial sciatic nerve ligation (pSNL) by use of microglial inhibitor, Mac1-saporin or astrocyte inhibitor, and L-α-aminoadipate (L-AA). Although single intrathecal injection of LPA1/3 antagonist, Ki-16425 did not affect the pain threshold at day 7 after the spinal cord injury, repeated treatments of each compound gradually reversed the basal pain threshold to the control level. The intrathecal administration of a microglia inhibitor, Mac-1-saporin reversed the late hyperalgesia and LPA production at day 14 after the pSNL, whereas L-AA inhibited the hyperalgesia, but had no effect on LPA production. The involvement of LPA receptors in astrocyte activation in vivo was evidenced by the findings that Ki-16425 treatments abolished the upregulation of CXCL1 in activated astrocytes in the spinal dorsal horn of mice at day 14 after the pSNL, and that Ki-16425 reversed the LPA-induced upregulation of several chemokine gene expressions in primary cultured astrocytes. Finally, we found that significant hyperalgesia was observed with intrathecal administration of primary cultured astrocytes, which had been stimulated by LPA in a Ki-16425-reversible manner. All these findings suggest that LPA production and LPA1/3 receptor activation through differential glial mechanisms play key roles in the maintenance as well as initiation mechanisms in NeuP.
Collapse
|
3
|
Hayashi Y, Ohnuma K, Furue MK. Pluripotent Stem Cell Heterogeneity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1123:71-94. [DOI: 10.1007/978-3-030-11096-3_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Yamamoto Y, Miyazaki S, Maruyama K, Kobayashi R, Le MNT, Kano A, Kondow A, Fujii S, Ohnuma K. Random migration of induced pluripotent stem cell-derived human gastrulation-stage mesendoderm. PLoS One 2018; 13:e0201960. [PMID: 30199537 PMCID: PMC6130871 DOI: 10.1371/journal.pone.0201960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/25/2018] [Indexed: 01/03/2023] Open
Abstract
Gastrulation is the initial systematic deformation of the embryo to form germ layers, which is characterized by the placement of appropriate cells in their destined locations. Thus, gastrulation, which occurs at the beginning of the second month of pregnancy, is a critical stage in human body formation. Although histological analyses indicate that human gastrulation is similar to that of other amniotes (birds and mammals), much of human gastrulation dynamics remain unresolved due to ethical and technical limitations. We used human induced pluripotent stem cells (hiPSCs) to study the migration of mesendodermal cells through the primitive streak to form discoidal germ layers during gastrulation. Immunostaining results showed that hiPSCs differentiated into mesendodermal cells and that epithelial–mesenchymal transition occurred through the activation of the Activin/Nodal and Wnt/beta-catenin pathways. Single-cell time-lapse imaging of cells adhered to cover glass showed that mesendodermal differentiation resulted in the dissociation of cells and an increase in their migration speed, thus confirming the occurrence of epithelial–mesenchymal transition. These results suggest that mesendodermal cells derived from hiPSCs may be used as a model system for studying migration during human gastrulation in vitro. Using random walk analysis, we found that random migration occurred for both undifferentiated hiPSCs and differentiated mesendodermal cells. Two-dimensional random walk simulation showed that homogeneous dissociation of particles may form a discoidal layer, suggesting that random migration might be suitable to effectively disperse cells homogeneously from the primitive streak to form discoidal germ layers during human gastrulation.
Collapse
Affiliation(s)
- Yuta Yamamoto
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
| | - Shota Miyazaki
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
| | - Kenshiro Maruyama
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
| | - Ryo Kobayashi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
| | - Minh Nguyen Tuyet Le
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
| | - Ayumu Kano
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
| | - Akiko Kondow
- Division of Biomedical Polymer Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Shuji Fujii
- Department of Materials Science and Technology, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
| | - Kiyoshi Ohnuma
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
- * E-mail:
| |
Collapse
|
5
|
Nakamura S, Maruyama A, Kondo Y, Kano A, De Sousa OM, Iwahashi M, Hexig B, Akaike T, Li J, Hayashi Y, Ohnuma K. Asymmetricity Between Sister Cells of Pluripotent Stem Cells at the Onset of Differentiation. Stem Cells Dev 2018; 27:347-354. [PMID: 29336219 PMCID: PMC5833898 DOI: 10.1089/scd.2017.0113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Various somatic stem cells divide asymmetrically; however, it is not known whether embryonic stem cells (ESCs) divide symmetrically or asymmetrically, not only while maintaining an undifferentiated state but also at the onset of differentiation. In this study, we observed single ESCs using time-lapse imaging and compared sister cell pairs derived from the same mother cell in either the maintenance or differentiation medium. Mouse ESCs were cultured on E-cadherin-coated glass-based dishes, which allowed us to trace single cells. The undifferentiated cell state was detected by green fluorescent protein (GFP) expression driven by the Nanog promoter, which is active only in undifferentiated cells. Cell population analysis using flow cytometry showed that the peak width indicating distribution of GFP expression broadened when cells were transferred to the differentiation medium compared to when they were in the maintenance medium. This finding suggested that the population of ESCs became more heterogeneous at the onset of differentiation. Using single-cell analysis by time-lapse imaging, we found that although the total survival ratio decreased by changing to differentiation medium, the one-live-one-dead ratio of sister cell pairs was smaller compared with randomly chosen non-sister cell pairs, defined as an unsynchronized cell pair control, in both media. This result suggested that sister cell pairs were more positively synchronized with each other compared to non-sister cell pairs. The differences in interdivision time (the time interval between mother cell division and the subsequent cell division) between sister cells was smaller than that between non-sister cell pairs in both media, suggesting that sister cells divided synchronously. Although the difference in Nanog-GFP intensity between sister cells was smaller than that between non-sister cells in the maintenance medium, it was the same in differentiation medium, suggesting asymmetrical Nanog-GFP intensity. These data suggested that ESCs may divide asymmetrically at the onset of differentiation resulting in heterogeneity.
Collapse
Affiliation(s)
- Shogo Nakamura
- 1 Department of Bioengineering, Nagaoka University of Technology , Nagaoka, Japan
| | - Atsushi Maruyama
- 1 Department of Bioengineering, Nagaoka University of Technology , Nagaoka, Japan
| | - Yuki Kondo
- 1 Department of Bioengineering, Nagaoka University of Technology , Nagaoka, Japan
| | - Ayumu Kano
- 1 Department of Bioengineering, Nagaoka University of Technology , Nagaoka, Japan
| | - Olga M De Sousa
- 2 Department of Electrical, Electronics and Information Engineering, Nagaoka University of Technology , Nagaoka, Japan
| | - Masahiro Iwahashi
- 2 Department of Electrical, Electronics and Information Engineering, Nagaoka University of Technology , Nagaoka, Japan
| | - Bayar Hexig
- 3 Tokyo Institute of Technology , Yokohama, Japan
| | | | - Jingyue Li
- 4 Faculty of Medicine, University of Tsukuba , Tsukuba, Japan
| | - Yohei Hayashi
- 4 Faculty of Medicine, University of Tsukuba , Tsukuba, Japan
| | - Kiyoshi Ohnuma
- 1 Department of Bioengineering, Nagaoka University of Technology , Nagaoka, Japan .,5 Department of Science of Technology Innovation, Nagaoka University of Technology , Nagaoka, Japan
| |
Collapse
|