1
|
Sharma N, Coticchio G, Borini A, Tachibana K, Nasmyth KA, Schuh M. Changes in DNA repair compartments and cohesin loss promote DNA damage accumulation in aged oocytes. Curr Biol 2024; 34:5131-5148.e6. [PMID: 39437784 DOI: 10.1016/j.cub.2024.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/20/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Oocyte loss, a natural process that accelerates as women approach their mid-30s, poses a significant challenge to female reproduction. Recent studies have identified DNA damage as a primary contributor to oocyte loss, but the mechanisms underlying DNA damage accumulation remain unclear. Here, we show that aged oocytes have a lower DNA repair capacity and reduced mobility of DNA damage sites compared to young oocytes. Incomplete DNA repair in aged oocytes results in defective chromosome integrity and partitioning, thereby compromising oocyte quality. We found that DNA repair proteins are arranged in spatially distinct DNA repair compartments that form during the late stages of oocyte growth, accompanied by changes in the activity of DNA repair pathways. We demonstrate alterations in these compartments with age, including substantial changes in the levels of key DNA repair proteins and a shift toward error-prone DNA repair pathways. In addition, we show that reduced cohesin levels make aged oocytes more vulnerable to persistent DNA damage and cause changes in DNA repair compartments. Our study links DNA damage accumulation in aged oocytes, a leading cause of oocyte loss, to cohesin deterioration and changes in the organization, abundance, and response of DNA repair machinery.
Collapse
Affiliation(s)
- Ninadini Sharma
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | | | - Andrea Borini
- IVIRMA Global Research Alliance, 9.baby, Bologna 40125, Italy
| | - Kikuë Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich 82152, Germany
| | - Kim A Nasmyth
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Melina Schuh
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany.
| |
Collapse
|
2
|
Koh YW, Hwang Y, Lee SK, Han JH, Haam S, Lee HW. The impact of CDCA5 expression on the immune microenvironment and its potential utility as a biomarker for PD-L1/PD-1 inhibitors in lung adenocarcinoma. Transl Oncol 2024; 46:102024. [PMID: 38838437 PMCID: PMC11214526 DOI: 10.1016/j.tranon.2024.102024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/24/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Studies have highlighted the important role of cell division cycle associated 5 (CDCA5) in tumor-associated immune dysfunction. We studied immune dysfunction based on CDCA5 expression in lung adenocarcinoma and investigated its potential as a biomarker for patients undergoing anti-programmed death protein-1/ programmed death ligand-1 (PD-1/PD-L1) inhibitor therapy. METHODS We used the CIBERSORTx algorithm to investigate the immune cell distribution based on CDCA5 and explored its potential as a biomarker for PD-1/PD-L1 therapy using Tumor Immune Dysfunction and Exclusion in three lung adenocarcinoma datasets. Thus, we validated the role of CDCA5 as a biomarker in patients treated with PD-1/PD-L1 inhibitors. We also investigated the pathways through which CDCA5 regulates PD-L1 expression in a cell line. RESULTS The high CDCA5 expression group showed elevated interferon gamma signature, CD274 expression, CD8+ T cell levels, tumor mutation burden, and microsatellite instability. Higher CDCA5 expression was associated with poorer prognosis in patients not treated with PD-1/PD-L1 inhibitors. However, in patients treated with PD-1/PD-L1 inhibitors, higher CDCA5 expression correlated with better response rates and prognosis. CDCA5 expression positively correlated with inhibitory immune checkpoint molecules. CDCA5 regulated the expression of PD-L1 through the ANXA/AKT pathway, and combined suppression of CDCA5 and PD-L1 synergistically inhibited cell proliferation. CONCLUSIONS CDCA5 served as a promising biomarker for patients undergoing PD-L1/PD-1 inhibitor treatment, and co-inhibition of CDCA5 and PD-L1 could serve as an effective therapeutic strategy.
Collapse
Affiliation(s)
- Young Wha Koh
- Department of Pathology, Ajou University School of Medicine, 16499 Suwon-si, South Korea.
| | - Yoonjung Hwang
- Department of Pathology, Ajou University School of Medicine, 16499 Suwon-si, South Korea
| | - Seul-Ki Lee
- Department of Pathology, Ajou University School of Medicine, 16499 Suwon-si, South Korea
| | - Jae-Ho Han
- Department of Pathology, Ajou University School of Medicine, 16499 Suwon-si, South Korea
| | - Seokjin Haam
- Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, 16499 Suwon-si, South Korea
| | - Hyun Woo Lee
- Department of Hematology-Oncology, Ajou University School of Medicine, 16499 Suwon-si, South Korea
| |
Collapse
|
3
|
Osychenko AA, Zalessky AD, Bachurin AV, Martirosyan DY, Egorova MS, Nadtochenko VA. Stain-free enucleation of mouse and human oocytes with a 1033 nm femtosecond laser. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:065002. [PMID: 38812963 PMCID: PMC11133223 DOI: 10.1117/1.jbo.29.6.065002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Significance Preparation of a recipient cytoplast by oocyte enucleation is an essential task for animal cloning and assisted reproductive technologies in humans. The femtosecond laser is a precise and low-invasive tool for oocyte enucleation, and it should be an appropriate alternative to traditional enucleation by a microneedle aspiration. However, until recently, the laser enucleation was performed only with applying a fluorescent dye. Aim This work is aimed to (1) achieve femtosecond laser oocyte enucleation without applying a fluorescent dye and (2) to study the effect of laser destruction of chromosomes on the structure and dynamics of the spindle. Approach We applied polarized light microscopy for spindle visualization and performed stain-free mouse and human oocyte enucleation with a 1033 nm femtosecond laser. Also, we studied transformation of a spindle after metaphase plate elimination by a confocal microscopy. Results We demonstrated a fundamental possibility of inactivating the metaphase plate in mouse and human oocytes by 1033 nm femtosecond laser radiation without applying a fluorescent dye. Irradiation of the spindle area, visualized by polarized light microscopy, resulted in partly or complete metaphase plate destruction but avoided the microtubules impairment. After the metaphase plate elimination, the spindle reorganized, however, it was not a complete depolymerization. Conclusions This method of recipient cytoplast preparation is expected to be useful for animal cloning and assisted reproductive technologies.
Collapse
Affiliation(s)
- Alina A. Osychenko
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, Russia
| | - Alexandr D. Zalessky
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, Russia
| | - Alexey V. Bachurin
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, Russia
- Medical Center of ART, Moscow, Russia
| | - David Yu. Martirosyan
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, Russia
| | - Maria S. Egorova
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, Russia
| | - Viktor A. Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Zhang Q, Zhang R, Li Y, Yang X. CDCA5 promoted cell invasion and migration by activating TGF-β1 pathway in human ovarian cancer cells. J Ovarian Res 2024; 17:68. [PMID: 38539247 PMCID: PMC10967103 DOI: 10.1186/s13048-024-01393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/14/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND The gene cell division cycle associated 5 (CDCA5), also called sororin, has oncogenic characteristics and is upregulated in various carcinomas. Nevertheless, the involvement of CDCA5 in ovarian cancer (OC), a highly aggressive form of cancer, and the underlying mechanism of metastasis remain inadequately investigated. RESULTS The bioinformatics data revealed a negative correlation between the patient's survival and CDCA5 expression, which was overexpressed in OC. Functional assays also confirmed high expression levels of CDCA5 in OC tissues and cells. This suggests that CDCA5 may potentially enhance the motility, migration, and proliferation of OC cells invitro. It impedes DNA damage and apoptosis in OC cells, inhibiting xenograft development in nude mice. The RNA sequencing results suggest CDCA5 is majorly associated with biological functions related to the extracellular matrix (ECM) and influences the transforming growth factor (TGF) signaling pathway. Moreover, subsequent functional investigations elucidated that CDCA5 facilitated the migration and invasion of OC cells viathe TGF-β1/Smad2/3 signaling pathway activation. CONCLUSIONS CDCA5 may be a strong potential therapeutic target for the treatment and management of OC.
Collapse
Affiliation(s)
- Qingsong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Rong Zhang
- Department of Gynecological Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Yuzhi Li
- Department of Gynecological Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Xiaojun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Osychenko AA, Zalessky AD, Tochilo UA, Martirosyan DY, Silaeva YY, Nadtochenko VA. Femtosecond laser oocyte enucleation as a low-invasive and effective method of recipient cytoplast preparation. BIOMEDICAL OPTICS EXPRESS 2022; 13:1447-1456. [PMID: 35414969 PMCID: PMC8973162 DOI: 10.1364/boe.449523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Recipient cytoplast preparation, commonly performed by DNA aspiration with a needle, inevitably leads to the loss of reprogramming factors. As an alternative to the traditional enucleation technique, femtosecond laser enucleation can eliminate DNA effectively without loss of reprogramming factors and without oocyte puncturing. In this work we have performed oocyte enucleation by destructing the metaphase plate using a 795 nm femtosecond laser. The disability of the enucleated oocytes to develop after the parthenogenetic activation, as well as the lack of DNA staining luminescence, strongly confirms the efficiency of the femtosecond laser enucleation. The parthenogenetic development of oocytes after the cytoplasm treatment suggests a low-invasive effect of the laser enucleation technique.
Collapse
Affiliation(s)
- Alina A. Osychenko
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences. 4 Kosygina Street, Building 1, 119991 Moscow, Russia
| | - Alexandr D. Zalessky
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences. 4 Kosygina Street, Building 1, 119991 Moscow, Russia
| | - Uliana A. Tochilo
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences. 4 Kosygina Street, Building 1, 119991 Moscow, Russia
| | - David Yu. Martirosyan
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences. 4 Kosygina Street, Building 1, 119991 Moscow, Russia
| | - Yulia Yu. Silaeva
- Institute of Gene Biology Russian Academy of Sciences. 34/5 Vavilova Street, 119334 Moscow, Russia
| | - Victor A. Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences. 4 Kosygina Street, Building 1, 119991 Moscow, Russia
| |
Collapse
|
6
|
Localization matters: nuclear-trapped Survivin sensitizes glioblastoma cells to temozolomide by elevating cellular senescence and impairing homologous recombination. Cell Mol Life Sci 2021; 78:5587-5604. [PMID: 34100981 PMCID: PMC8257519 DOI: 10.1007/s00018-021-03864-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022]
Abstract
To clarify whether differential compartmentalization of Survivin impacts temozolomide (TMZ)-triggered end points, we established a well-defined glioblastoma cell model in vitro (LN229 and A172) and in vivo, distinguishing between its nuclear and cytoplasmic localization. Expression of nuclear export sequence (NES)-mutated Survivin (SurvNESmut-GFP) led to impaired colony formation upon TMZ. This was not due to enhanced cell death but rather due to increased senescence. Nuclear-trapped Survivin reduced homologous recombination (HR)-mediated double-strand break (DSB) repair, as evaluated by γH2AX foci formation and qPCR-based HR assay leading to pronounced induction of chromosome aberrations. Opposite, clones, expressing free-shuttling cytoplasmic but not nuclear-trapped Survivin, could repair TMZ-induced DSBs and evaded senescence. Mass spectrometry-based interactomics revealed, however, no direct interaction of Survivin with any of the repair factors. The improved TMZ-triggered HR activity in Surv-GFP was associated with enhanced mRNA and stabilized RAD51 protein expression, opposite to diminished RAD51 expression in SurvNESmut cells. Notably, cytoplasmic Survivin could significantly compensate for the viability under RAD51 knockdown. Differential Survivin localization also resulted in distinctive TMZ-triggered transcriptional pathways, associated with senescence and chromosome instability as shown by global transcriptome analysis. Orthotopic LN229 xenografts, expressing SurvNESmut exhibited diminished growth and increased DNA damage upon TMZ, as manifested by PCNA and γH2AX foci expression, respectively, in brain tissue sections. Consequently, those mice lived longer. Although tumors of high-grade glioma patients expressed majorly nuclear Survivin, they exhibited rarely NES mutations which did not correlate with survival. Based on our in vitro and xenograft data, Survivin nuclear trapping would facilitate glioma response to TMZ.
Collapse
|
7
|
Chen H, Chen J, Zhao L, Song W, Xuan Z, Chen J, Li Z, Song G, Hong L, Song P, Zheng S. CDCA5, Transcribed by E2F1, Promotes Oncogenesis by Enhancing Cell Proliferation and Inhibiting Apoptosis via the AKT Pathway in Hepatocellular Carcinoma. J Cancer 2019; 10:1846-1854. [PMID: 31205541 PMCID: PMC6547986 DOI: 10.7150/jca.28809] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/28/2019] [Indexed: 01/03/2023] Open
Abstract
Cell division cycle associated 5 (CDCA5) is an important element for the interaction between cohesin and chromatin in interphase. It is abnormally expressed in many types of cancer and works as an indicator of poor prognosis, but little is known about its activity in hepatocellular carcinoma (HCC). In the present study, we found that the expression of CDCA5 was upregulated in HCC tissues compared to paracancerous tissues and had a negative correlation with patient survival. Cell proliferation and tumorigenesis were inhibited and cell apoptosis was induced with the knockdown of CDCA5, suggesting an oncogenic role of CDCA5 in liver cancer. Luciferase reporter assay and chromatin immunoprecipitation showed that CDCA5 was transcribed by E2F1. Furthermore, we confirmed that CDCA5 interrupted cell behavior via the AKT pathway. These findings demonstrated that CDCA5 plays an important role in HCC progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Penghong Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University; NHCPRC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China; Collaborative innovation center for Diagnosis treatment of infectious diseases
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University; NHCPRC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China; Collaborative innovation center for Diagnosis treatment of infectious diseases
| |
Collapse
|
8
|
Greaney J, Wei Z, Homer H. Regulation of chromosome segregation in oocytes and the cellular basis for female meiotic errors. Hum Reprod Update 2017; 24:135-161. [PMID: 29244163 DOI: 10.1093/humupd/dmx035] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/12/2017] [Accepted: 11/26/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Meiotic chromosome segregation in human oocytes is notoriously error-prone, especially with ageing. Such errors markedly reduce the reproductive chances of increasing numbers of women embarking on pregnancy later in life. However, understanding the basis for these errors is hampered by limited access to human oocytes. OBJECTIVE AND RATIONALE Important new discoveries have arisen from molecular analyses of human female recombination and aneuploidy along with high-resolution analyses of human oocyte maturation and mouse models. Here, we review these findings to provide a contemporary picture of the key players choreographing chromosome segregation in mammalian oocytes and the cellular basis for errors. SEARCH METHODS A search of PubMed was conducted using keywords including meiosis, oocytes, recombination, cohesion, cohesin complex, chromosome segregation, kinetochores, spindle, aneuploidy, meiotic cell cycle, spindle assembly checkpoint, anaphase-promoting complex, DNA damage, telomeres, mitochondria, female ageing and female fertility. We extracted papers focusing on mouse and human oocytes that best aligned with the themes of this review and that reported transformative and novel discoveries. OUTCOMES Meiosis incorporates two sequential rounds of chromosome segregation executed by a spindle whose component microtubules bind chromosomes via kinetochores. Cohesion mediated by the cohesin complex holds chromosomes together and should be resolved at the appropriate time, in a specific step-wise manner and in conjunction with meiotically programmed kinetochore behaviour. In women, the stage is set for meiotic error even before birth when female-specific crossover maturation inefficiency leads to the formation of at-risk recombination patterns. In adult life, multiple co-conspiring factors interact with at-risk crossovers to increase the likelihood of mis-segregation. Available evidence support that these factors include, but are not limited to, cohesion deterioration, uncoordinated sister kinetochore behaviour, erroneous microtubule attachments, spindle instability and structural chromosomal defects that impact centromeres and telomeres. Data from mice indicate that cohesin and centromere-specific histones are long-lived proteins in oocytes. Since these proteins are pivotal for chromosome segregation, but lack any obvious renewal pathway, their deterioration with age provides an appealing explanation for at least some of the problems in older oocytes. WIDER IMPLICATIONS Research in the mouse model has identified a number of candidate genes and pathways that are important for chromosome segregation in this species. However, many of these have not yet been investigated in human oocytes so it is uncertain at this stage to what extent they apply to women. The challenge for the future involves applying emerging knowledge of female meiotic molecular regulation towards improving clinical fertility management.
Collapse
Affiliation(s)
- Jessica Greaney
- Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus, Herston QLD 4029, Australia
| | - Zhe Wei
- Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus, Herston QLD 4029, Australia
| | - Hayden Homer
- Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus, Herston QLD 4029, Australia
| |
Collapse
|