1
|
Almutairi BO, Alsayadi AI, Abutaha N, AL-mekhlafi FA, Wadaan MA. Evaluation of the Anticancer Potential of Morus nigra and Ocimum basilicum Mixture against Different Cancer Cell Lines: An In Vitro Evaluation. BIOMED RESEARCH INTERNATIONAL 2023; 2023:9337763. [PMID: 37124934 PMCID: PMC10132895 DOI: 10.1155/2023/9337763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/23/2022] [Accepted: 03/03/2023] [Indexed: 05/02/2023]
Abstract
Morus nigra (M) and Ocimum basilicum (O) mixture (MO2) extract was extracted using hexane (MO2H), chloroform (MO2C), ethyl acetate (MO2E), and methanol (MO2M) in a Soxhlet apparatus. The cytotoxicity was evaluated using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. The IC50 values of the MO2C-treated cancer cells were 11.31 μg/mL (MDA-MB-231), 15.45 μg/mL (MCF-7), 18.9 μg/mL (HepG2), 26.33 μg/mL (Huh-7), 30.17 μg/mL (LoVo), and 36.76 μg/mL (HCT116). MO2C-treated cells showed cellular and nuclear morphological alterations like chromatin condensation and formation of apoptotic bodies as observed using light and fluorescent microscopy. The antioxidant and anti-inflammatory properties were investigated in vitro using 2,2'-diphenyl-1-picrylhydrazyl (DPPH) and egg albumin denaturation assays. It was evident that the MO2M extract exhibited the highest antioxidant activity (18.13%), followed by the MO2E extract (12.25%), MO2C extract (9.380%), and MO2H extract (6.31%). The highest inhibition percentage of albumin denaturation was observed in MO2H (28.54%), followed by MO2M (4.32%) at 0.2 and 0.1 mg/mL concentrations, respectively. The compounds identified using gas chromatography-mass spectrometry (GC-MS) analysis for MO2C extract were α-trans-bergamotene, germacrene D, selin-4,7(11)-diene, 2 tridecen-1-ol, and 2-decen-1-ol. The present study reveals that MO2C has promising anticancer activity and may serve as a potent polyherbal extract in cancer treatment.
Collapse
Affiliation(s)
- Bader O. Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia
| | - Ahmed I. Alsayadi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia
| | - Nael Abutaha
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia
| | - Fahd A. AL-mekhlafi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia
| | - Mohamed A. Wadaan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Arokia Femina T, Barghavi V, Archana K, Swethaa NG, Maddaly R. Non-uniformity in in vitro drug-induced cytotoxicity as evidenced by differences in IC 50 values - implications and way forward. J Pharmacol Toxicol Methods 2023; 119:107238. [PMID: 36521817 DOI: 10.1016/j.vascn.2022.107238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Cell lines have proven indispensable for in vitro experiments and their utility as experimental models range from understanding the fundamental cell functioning to drug discovery. One of the most common utility of cell lines is for in vitro drug testing. Drug testing involves determining the cytotoxic effects of the drugs and such a measurement is expressed as the IC50 values of drugs. Although determination of IC50 values of drugs on cell lines is one of the most common in vitro experimental approaches, a significant amount of variations can be observed in the results obtained from such studies. Although the variations in the IC50 values of a drug on different cells lines can and should vary, the non-uniformity of such results reported from different studies using a particular drug on a specific cell line is a matter of concern. We present the IC50 values of 5 most commonly used drugs 5-fluorouracil, bleomycin, cisplatin, doxorubicin and methotrexate obtained from several in vitro cell line-based studies. Some of the factors which contribute to the non-uniformity of the IC50 values for a particular drug from different studies are discussed as three types of factors, the biological, non-biological and human factors. Also, ways in which such variations can be reduced to obtain universally common, reliable results are presented.
Collapse
Affiliation(s)
- T Arokia Femina
- Department of Human Genetics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu 600116, India
| | - V Barghavi
- Department of Human Genetics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu 600116, India
| | - K Archana
- Department of Human Genetics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu 600116, India
| | - N G Swethaa
- Department of Biotechnology, Anna University, Guindy, Chennai 600 025, India
| | - Ravi Maddaly
- Department of Human Genetics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu 600116, India.
| |
Collapse
|
3
|
Chemopreventive Effect on Human Colon Adenocarcinoma Cells of Styrylquinolines: Synthesis, Cytotoxicity, Proapoptotic Effect and Molecular Docking Analysis. Molecules 2022; 27:molecules27207108. [PMID: 36296703 PMCID: PMC9607578 DOI: 10.3390/molecules27207108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Seven styrylquinolines were synthesized in this study. Two of these styrylquinolines are new and were elucidated by spectroscopic analysis. The chemopreventive potential of these compounds was evaluated against SW480 human colon adenocarcinoma cells, its metastatic derivative SW620, and normal cells (HaCaT). According to the results, compounds 3a and 3d showed antiproliferative activity in SW480 and SW620 cells, but their effect seemed to be caused by different mechanisms of action. Compound 3a induced apoptosis independent of ROS production, as evidenced by increased levels of caspase 3, and had an immunomodulatory effect, positively regulating the production of different immunological markers in malignant cell lines. In contrast, compound 3d generated a pro-oxidant response and inhibited the growth of cancer cells, probably by another type of cell death other than apoptosis. Molecular docking studies indicated that the most active compound, 3a, could efficiently bind to the proapoptotic human caspases-3 protein, a result that could provide valuable information on the biochemical mechanism for the in vitro cytotoxic response of this compound in SW620 colon carcinoma cell lines. The obtained results suggest that these compounds have chemopreventive potential against CRC, but more studies should be carried out to elucidate the molecular mechanisms of action of each of them in depth.
Collapse
|
4
|
Hu S, Ma W, Wang J, Ma Y, Zhou Z, Zhang R, Du K, Zhang H, Sun M, Jiang X, Tu H, Tang X, Yao X, Chen P. Synthesis and anticancer evaluations of novel 1H-imidazole [4,5-f][1,10] phenanthroline derivative for the treatment of colorectal cancer. Eur J Pharmacol 2022; 928:175120. [PMID: 35753402 DOI: 10.1016/j.ejphar.2022.175120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
Abstract
1H-imidazole [4,5-f][1,10] phenanthroline is a promising chemical structure for cancer treatment. Herein, we synthesized a novel 1H-imidazole [4,5-f][1,10] phenanthroline derivative named IPM714 and found it exhibited selectively colorectal cancer (CRC) cells inhibitory activities, with half maximal inhibitory concentration (IC50) of 1.74 μM and 2 μM in HCT116 cells and SW480 cells, respectively. The present study is intended to explore the cytotoxicity of IPM714 in cancer cells of various types and its anticancer mechanism in vitro. Cellular functional analyses indicated IPM714 can arrest HCT116 cell cycle in S phase and induce apoptosis in both HCT116 and SW480 cells. Western blot and molecular docking showed that IPM714 may suppress PI3K/AKT/mTOR pathway to inhibit cell proliferation and regulate cell cycle and apoptosis. This study proved IPM714 to be a promising drug in CRC therapy.
Collapse
Affiliation(s)
- Shujian Hu
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Wantong Ma
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Junyi Wang
- College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Wenzhou, 325060, PR China
| | - Yunhao Ma
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Zhongkun Zhou
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Rentao Zhang
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Kangjia Du
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Hao Zhang
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Mengze Sun
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xinrong Jiang
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Hongyuan Tu
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xiaoliang Tang
- College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China
| | - Xiaojun Yao
- Macau Institute for Applied Research in Medicine and Health, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Peng Chen
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| |
Collapse
|
5
|
Furbo S, Urbano PCM, Raskov HH, Troelsen JT, Kanstrup Fiehn AM, Gögenur I. Use of Patient-Derived Organoids as a Treatment Selection Model for Colorectal Cancer: A Narrative Review. Cancers (Basel) 2022; 14:cancers14041069. [PMID: 35205817 PMCID: PMC8870458 DOI: 10.3390/cancers14041069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the third most common type of cancer globally. Despite successful treatment, it has a 40% chance of recurrence within five years after surgery. While neoadjuvant chemotherapy is offered for stage IV cancers, it comes with a risk of resistance and disease progression. CRC tumors vary biologically, recur frequently, and pose a significant risk for cancer-related mortality, making it increasingly relevant to develop methods to study personalized treatment. A tumor organoid is a miniature, multicellular, and 3D replica of a tumor in vitro that retains its characteristics. Here, we discuss the current methods of culturing organoids and the correlation of drug response in organoids with clinical responses in patients. This helps us to determine whether organoids can be used for treatment selection in a clinical setting. Based on the studies included, there was a strong correlation between treatment responses of organoids and clinical treatment responses. Abstract Surgical resection is the mainstay in intended curative treatment of colorectal cancer (CRC) and may be accompanied by adjuvant chemotherapy. However, 40% of the patients experience recurrence within five years of treatment, highlighting the importance of improved, personalized treatment options. Monolayer cell cultures and murine models, which are generally used to study the biology of CRC, are associated with certain drawbacks; hence, the use of organoids has been emerging. Organoids obtained from tumors display similar genotypic and phenotypic characteristics, making them ideal for investigating individualized treatment strategies and for integration as a core platform to be used in prediction models. Here, we review studies correlating the clinical response in patients with CRC with the therapeutic response in patient-derived organoids (PDO), as well as the limitations and potentials of this model. The studies outlined in this review reported strong associations between treatment responses in the PDO model and clinical treatment responses. However, as PDOs lack the tumor microenvironment, they do not genuinely account for certain crucial characteristics that influence therapeutic response. To this end, we reviewed studies investigating PDOs co-cultured with tumor-infiltrating lymphocytes. This model is a promising method allowing evaluation of patient-specific tumors and selection of personalized therapies. Standardized methodologies must be implemented to reach a “gold standard” for validating the use of this model in larger cohorts of patients. The introduction of this approach to a clinical scenario directing neoadjuvant treatment and in other curative and palliative treatment strategies holds incredible potential for improving personalized treatment and its outcomes.
Collapse
Affiliation(s)
- Sara Furbo
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (S.F.); (P.C.M.U.); (H.H.R.); (A.-M.K.F.)
| | - Paulo César Martins Urbano
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (S.F.); (P.C.M.U.); (H.H.R.); (A.-M.K.F.)
| | - Hans Henrik Raskov
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (S.F.); (P.C.M.U.); (H.H.R.); (A.-M.K.F.)
| | - Jesper Thorvald Troelsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark;
- Enhanced Perioperative Oncology (EPeOnc) Consortium, Zealand University Hospital, 4600 Køge, Denmark
| | - Anne-Marie Kanstrup Fiehn
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (S.F.); (P.C.M.U.); (H.H.R.); (A.-M.K.F.)
- Department of Pathology, Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 København, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (S.F.); (P.C.M.U.); (H.H.R.); (A.-M.K.F.)
- Enhanced Perioperative Oncology (EPeOnc) Consortium, Zealand University Hospital, 4600 Køge, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 København, Denmark
- Correspondence: ; Tel.: +45-2633-6426
| |
Collapse
|
6
|
Raini SK, Takamatsu Y, Dumre SP, Urata S, Mizukami S, Moi ML, Hayasaka D, Inoue S, Morita K, Ngwe Tun MM. The novel therapeutic target and inhibitory effects of PF-429242 against Zika virus infection. Antiviral Res 2021; 192:105121. [PMID: 34175321 DOI: 10.1016/j.antiviral.2021.105121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023]
Abstract
Zika virus (ZIKV) is a re-emerging mosquito-borne flavivirus of African origin that is transmitted by Aedes mosquitoes. ZIKV was historically limited to Africa and Asia, where mild cases were reported. However, ZIKV has recently been responsible for major global outbreaks associated with a wide range of neurological complications. Since no antiviral therapy exists for ZIKV, drug discovery research for ZIKV is crucial. Intracellular lipids regulated by sterol regulatory element-binding proteins (SREBPs) are important in flavivirus pathogenesis. PF-429242 has been reported to inhibit the activity of site-1 protease (S1P), which regulates the expression of SREBP target genes. Our primary objective in this study is to elucidate the mechanism of the antiviral activity of PF-429242 against the African genotype (ZIKVMR-766) and Asian genotypes (ZIKV H/PF 2013 and ZIKV PRVABC59) using several primate-derived cell lines. The virus titer was determined via a focus-forming assay; we used flow cytometry to quantify intracellular lipids in ZIKV-infected and mock-treated cells. The PF-429242 molecule effectively suppressed ZIKV infection in neuronal cell lines; T98G, U-87MG, SK-N-SH and primary monocytes cell, indicating that PF-429242 molecule can be used therapeutically. A strong reduction in ZIKV replication was observed at 12 μM and 30 μM in in neuronal cell lines and primary monocytes, respectively. Interestingly, the inhibitory effects of the PF-429242 molecule were observed when it was tested on various ZIKV-lineage infections. Lipid quantification reveals that ZIKV increases lipogenesis in infected cells, while the exogenous addition of cholesterol effectively blocks ZIKV replication. Furthermore, the supplementation of oleic acid increases the ZIKV titer. Fenofibrate, an inhibitor of lipid droplet formation, reduces the ZIKV titer. Collectively, our results demonstrate that the development of antiviral drugs against ZIKV could be based on key regulators of lipid metabolism. In addition, this study reveals that the mechanism of the PF-429242-mediated suppression among flavivirus infections is not entirely identical. Our results warrant further evaluation of PF-429242 as a prospective antiviral drug, given the multiple advantageous properties of this compound, such as its limited toxicity, neuroprotective properties, and broad spectrum of capabilities.
Collapse
Affiliation(s)
- Sandra Kendra Raini
- Department of Virology, Institute of Tropical Medicine and Leading Program, Graduate School of Biomedical Science, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yuki Takamatsu
- Department of Virology 1, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama City, Tokyo, 208-0011, Japan
| | - Shyam Prakash Dumre
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Bagmati, 44601, Nepal
| | - Shuzo Urata
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Shusaku Mizukami
- Department of Immune Regulation, Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Meng Ling Moi
- Department of Virology, Institute of Tropical Medicine and Leading Program, Graduate School of Biomedical Science, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Daisuke Hayasaka
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Shingo Inoue
- Department of Virology, Institute of Tropical Medicine and Leading Program, Graduate School of Biomedical Science, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine and Leading Program, Graduate School of Biomedical Science, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine and Leading Program, Graduate School of Biomedical Science, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
7
|
Hu J, Song J, Tang Z, Wei S, Chen L, Zhou R. Hypericin-mediated photodynamic therapy inhibits growth of colorectal cancer cells via inducing S phase cell cycle arrest and apoptosis. Eur J Pharmacol 2021; 900:174071. [PMID: 33811836 DOI: 10.1016/j.ejphar.2021.174071] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022]
Abstract
Colorectal cancer (CRC) is one type of cancer with high morbidity and mortality worldwide. Photodynamic therapy (PDT), a promising new therapeutic approach for cancer, induces tumor damage through photosensitizer-mediated oxidative cytotoxicity. Hypericin is a powerful photosensitizer with pronounced tumor-localizing properties. In this study, we investigated the phototoxic effects of hypericin-mediated PDT (HYP-PDT) in HCT116 and SW620 cells. We validated that HYP-PDT inhibited cell proliferation, triggered intracellular reactive oxygen species generation, induced S phase cell cycle arrest and apoptosis of HCT116 and SW620 cells. Mechanistically, the results of western blot showed that HYP-PDT downregulated CDK2 expression through decreasing the CDC25A protein, which resulted in the decrease of CDK2/Cyclin A complex. Additionally, HYP-PDT induced DNA damage as evidenced by ATM activation and upregulation of p-H2AX. Further investigation showed that HYP-PDT significantly increased Bax expression and decreased Bcl-2 expression, and then, upregulated the expression of cleaved caspase-9, cleaved caspase-3 and cleaved PARP, thereby inducing apoptosis in HCT116 and SW620 cells. In conclusion, our results indicated that the CDC25A/CDK2/Cyclin A pathway and the mitochondrial apoptosis pathway were involved in HYP-PDT induced S phase cell cycle arrest and apoptosis in colorectal cancer cells, which shows HYP could be a probable candidate used for treating colorectal cancer.
Collapse
Affiliation(s)
- Jinhang Hu
- Co-construction Collaborative Innovation Center of Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712046, People's Republic of China
| | - Jiangluqi Song
- School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, 710071, People's Republic of China.
| | - Zhishu Tang
- Co-construction Collaborative Innovation Center of Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712046, People's Republic of China.
| | - Simin Wei
- Co-construction Collaborative Innovation Center of Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712046, People's Republic of China
| | - Lin Chen
- Co-construction Collaborative Innovation Center of Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712046, People's Republic of China
| | - Rui Zhou
- Co-construction Collaborative Innovation Center of Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712046, People's Republic of China
| |
Collapse
|
8
|
Acharya N, Singh KP. Differential sensitivity of renal carcinoma cells to doxorubicin and epigenetic therapeutics depends on the genetic background. Mol Cell Biochem 2021; 476:2365-2379. [PMID: 33591455 DOI: 10.1007/s11010-021-04076-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Differential sensitivity to chemotherapeutics is a limitation in chemotherapy of kidney cancer patients. Role of genetic background in chemotherapy is not fully understood. Therefore, this study evaluated the influence of genetic/epigenetic background of renal cancer cells on the sensitivity to chemotherapeutics. Two renal cell carcinoma (RCC) cell lines, Caki-1 and 786-0, with different genetic makeup of p53 and VHL were treated with doxorubicin either alone or in combination with epigenetic therapeutics 5-aza-2-dc and TSA. Sensitivity of RCC cells to these drugs was evaluated by cell viability and cell cycle analysis and was further confirmed by analysis of selected genes expression. Cell viability data revealed that 786-0 cells were more sensitive than Caki-1 to doxorubicin. Combination of doxorubicin with 5-aza-2-dc or TSA was more effective to inhibit growth of Caki-1 cells but not the 786-0. Data of cell cycle analysis and expression of representative genes for tumor suppressor, cell cycle and survival, drug transporter and DNA repair further provided the molecular basis for differential sensitivity of Caki-1 and 786-0 cell lines to doxorubicin. Important findings of this study suggest that doxorubicin is more cytotoxic to primary renal cancer 786-0 cells with mutant VHL and p53 than the metastatic Caki-1 cells with wild-type VHL and p53, and this differential response was independent of p53 expression level. This study suggests that combination of doxorubicin with epigenetic therapeutics could potentially be beneficial in clinical treatment of renal cancer patients with wild-type VHL and p53 but not in patients with mutant VHL and p53.
Collapse
Affiliation(s)
- Narayan Acharya
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, 79409, USA
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
9
|
Thummarati P, Suksiriworapong J, Sakchaisri K, Junyaprasert VB. Effect of chemical linkers of curcumin conjugated hyaluronic acid on nanoparticle properties and in vitro performances in various cancer cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Jena BC, Mandal M. The emerging roles of exosomes in anti-cancer drug resistance and tumor progression: An insight towards tumor-microenvironment interaction. Biochim Biophys Acta Rev Cancer 2020; 1875:188488. [PMID: 33271308 DOI: 10.1016/j.bbcan.2020.188488] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022]
Abstract
The tumor microenvironment (TME) is a complex network of cellular organization consisting of fibroblasts, adipocytes, pericytes, immune cells endothelial cells, and extracellular matrix proteins. Besides communicating with each other, tumor cells are also involved in the tumor stroma interaction. Presently, most of the studies have focused on the contribution of TME in supporting tumor growth through intercellular communication by physical contact between the cells or through paracrine signaling cascades of growth factors and cytokines. The crosstalk between the tumor and TME has a pivotal role in the development of anti-cancer drug resistance. Drug resistance, be it against targeted or non-targeted drugs, has emerged as a major hurdle in the successful therapeutic intervention of cancer. Among the several mechanisms involved in the development of the resistance to anti-cancer therapies, exosomes have recently come into the limelight. Exosomes are the nano-sized vesicles, originated from the endolysosomal compartments and have the inherent potential to shuttle diverse biomolecules like proteins, lipids, and nucleic acids to the recipient cells. There are also instances where the pharmacological compounds are transferred between the cells via exosomes. For instance, the transfer of the cargoes from the drug-resistant tumor cells immensely affects the recipient drug-sensitive cells in terms of their proliferation, survival, migration, and drug resistance. In this review, we have discussed multiple aspects of the exosome-mediated bidirectional interplay between tumor and TME. Furthermore, we have also emphasized the contribution of exosomes promoting drug resistance and therapeutic strategies to mitigate the exosome induced drug resistance as well.
Collapse
Affiliation(s)
- Bikash Chandra Jena
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India.
| |
Collapse
|
11
|
Lohberger B, Bernhart E, Stuendl N, Glaenzer D, Leithner A, Rinner B, Bauer R, Kretschmer N. Periplocin mediates TRAIL-induced apoptosis and cell cycle arrest in human myxofibrosarcoma cells via the ERK/p38/JNK pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153262. [PMID: 32559583 DOI: 10.1016/j.phymed.2020.153262] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Periploca sepium is traditionally used in Chinese medicine to treat particularly rheumatic disorders and as a tonic. Periplocin was found as the most cytotoxic compound of its root bark and induced death receptor mediated apoptosis in liposarcoma cells. Sarcomas are a rare type of cancer with only a few treatment options. The five-year survival rate of advanced tumors is low. PURPOSE In this study, we investigated the effects of periplocin in two myxofibrosarcoma (MFS)cell lines, MUG-Myx2a and MUG-Myx2b, which are subclones of the same tumor and reflect the tumor´s heterogeneity, and in T60 primary myxofibrosarcoma cells. METHODS The xCELLigence system and the CellTiter 96® AQueous assay were used for studying cell viability. FACS and Western blot experiments were used to investigate the effects of periplocin on apoptosis induction, cell cycle distribution, and the expression of cleaved PARP, caspase 3, p53, phospho-histone γH2AX, ERK/phospho ERK, p38/phospho p38, and, finally, JNK/phospho JNK. Additionally, the expression of the apoptotic markers Bim, NOXA, Bak, Bcl-2, Bcl-xl, and the death receptors IGFR, FADD, TRADD, TNFR1A, TRAIL-R1, and TRAIL-R2 were evaluated using reversed real-time PCR. RESULTS Periplocin decreased dose-dependently the viability of all MFS cell lines and was more effective than the standard chemotherapeutic doxorubicin. It arrested the cells in the G2/M phase and led to caspase activation. Moreover, periplocin increased the mRNA expression of NOXA, Bak, Bcl-2, and death receptors such as TRAIL-R1 and TRAIL-R2 and the protein expression of ERK/phospho ERK, p38/phospho p38, and JNK/phospho JNK. In all cases, differences in the effects in the different subclones were observed. CONCLUSION Periplocin showed promising effects in MFS cells. The higher effectiveness compared to doxorubicin is an important aspect for further research with regard as a treatment option. The different effects of periplocin in the two subclones showed the great importance of intratumoral heterogeneity in MFS therapy.
Collapse
Affiliation(s)
- Birgit Lohberger
- Department of Orthopedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036Graz, Austria.
| | - Eva Bernhart
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010Graz, Austria
| | - Nicole Stuendl
- Department of Orthopedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036Graz, Austria
| | - Dietmar Glaenzer
- Department of Orthopedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036Graz, Austria
| | - Andreas Leithner
- Department of Orthopedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036Graz, Austria
| | - Beate Rinner
- Division of Biomedical Research, Medical University Graz, Roseggerweg 48, 8036Graz, Austria
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Universitaetsplatz 4/1, 8010Graz, Austria
| | - Nadine Kretschmer
- Division of Biomedical Research, Medical University Graz, Roseggerweg 48, 8036Graz, Austria; Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Universitaetsplatz 4/1, 8010Graz, Austria
| |
Collapse
|
12
|
Zinovieva OL, Grineva EN, Krasnov GS, Karpov DS, Zheltukhin AO, Snezhkina AV, Kudryavtseva AV, Mashkova TD, Lisitsyn NA. Treatment of cancer cells with chemotherapeutic drugs results in profound changes in expression of genes encoding aldehyde-metabolizing enzymes. J Cancer 2019; 10:4256-4263. [PMID: 31413744 PMCID: PMC6691692 DOI: 10.7150/jca.32608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/21/2019] [Indexed: 12/15/2022] Open
Abstract
Using RNA-seq, RT-qPCR, and bioinformatics we have studied the influence of a wide spectrum of chemotherapeutic drugs on transcription of AKR1B10, AKR1C1, ALDH1A1, and ALDH1A3 genes, which encode the major aldehyde-metabolizing enzymes. The strongest alterations were detected in case of AKR1B10 mRNA that was significantly upregulated in wild type p53 cancer cells, but downregulated in mutant p53 cancer cells. Subsequent experiments demonstrated the significant and consistent decrease in the AKR1B10 mRNA content in sera of colon cancer patients, as compared to sera of healthy donors (p<0.0001, SPE=92.9%, SNE=79.3%, AUC=0.889), which implies that this RNA is a valuable marker for serological diagnosis of colorectal cancer. Moreover, we have found that ALDH1A3 protein is a key inactivator of ROS-generated aldehydes, which is a perspective target for the development of new chemotherapeutic drugs.
Collapse
Affiliation(s)
- Olga L Zinovieva
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Evgeniya N Grineva
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia.,Institute of Biomedical Chemistry, the Russian Academy of Sciences, 119121 Moscow, Russia
| | - Dmitry S Karpov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia.,Institute of Biomedical Chemistry, the Russian Academy of Sciences, 119121 Moscow, Russia
| | - Andrei O Zheltukhin
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasiya V Snezhkina
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tamara D Mashkova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nikolai A Lisitsyn
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
13
|
A comparative assessment of the effects of integrin inhibitor cilengitide on primary culture of head and neck squamous cell carcinoma (HNSCC) and HNSCC cell lines. Clin Transl Oncol 2019; 21:1052-1060. [DOI: 10.1007/s12094-018-02025-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/20/2018] [Indexed: 01/17/2023]
|
14
|
Liu L, Liu B, Li J, Zhen S, Ye Z, Cheng M, Liu W. Responses of Different Cancer Cells to White Tea Aqueous Extract. J Food Sci 2018; 83:2593-2601. [PMID: 30251345 DOI: 10.1111/1750-3841.14351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 07/01/2018] [Accepted: 08/24/2018] [Indexed: 01/05/2023]
Abstract
White tea from the eastern Chinese province of Fujian is a unique tea variety. Although the health effects of various teas have been investigated in recent years, most studies focused exclusively on green tea varieties. In order to study effects exerted by white tea from eastern Fujian on the viability of cancer cells, we analyzed its main bioactive ingredients. We also evaluated the antioxidant activity of white tea aqueous extract (WTAE) and employed MTT assay to evaluate effects of WTAE on viabilities of Hela and BEL-7402 cancer cell lines. Apoptosis rate detection was also applied to estimate efficacy of cellular apoptotic induction by WTAE in these two cells types. Results revealed that WTAE exhibited high antioxidant activity and inhibited effectively the proliferation of Hela and BEL-7402 cells. The half maximal inhibitory concentration (IC50) of WTAE for Hela cells (0.05 mg/mL) was lower than that for BEL-7402 cells (0.1 mg/mL). Although WTAE induced apoptosis in both cell lines, pro-apoptotic effects were markedly more apparent in Hela cells. Our study demonstrated that WTAE inhibited proliferation of cancer cells via induction of apoptosis and that Hela cells were more sensitive to WTAE than BEL-7402 cells. PRACTICAL APPLICATION The aim of this study is to provide a new approach toward cancer prevention by consuming white tea, the properties of which may also be helpful in formulating novel anticancer therapeutics.
Collapse
Affiliation(s)
- Liyue Liu
- College of Life Science, Ningde normal Univ., Ningde, 352101, P. R. China
| | - Bo Liu
- College of Life Science, Ningde normal Univ., Ningde, 352101, P. R. China
| | - Jinzhou Li
- College of Life Science, Ningde normal Univ., Ningde, 352101, P. R. China
| | - Shengyang Zhen
- Public Service Platform for Marine Characteristic Germplasm Resources and Biologic Products Development in Western Trait, Ningde, 352101, P. R. China
| | - Zuyun Ye
- Technological Research Centre of Special Medical Plant Project in Fujian, Ningde, 352101, P. R. China
| | - Meixia Cheng
- College of Life Science, Ningde normal Univ., Ningde, 352101, P. R. China
| | - Wei Liu
- College of Life Science, Ningde normal Univ., Ningde, 352101, P. R. China
| |
Collapse
|
15
|
Kasai F, Hirayama N, Ozawa M, Satoh M, Kohara A. HuH-7 reference genome profile: complex karyotype composed of massive loss of heterozygosity. Hum Cell 2018; 31:261-267. [PMID: 29774518 PMCID: PMC6002425 DOI: 10.1007/s13577-018-0212-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/12/2018] [Indexed: 12/24/2022]
Abstract
Human cell lines represent a valuable resource as in vitro experimental models. A hepatoma cell line, HuH-7 (JCRB0403), has been used extensively in various research fields and a number of studies using this line have been published continuously since it was established in 1982. However, an accurate genome profile, which can be served as a reliable reference, has not been available. In this study, we performed M-FISH, SNP microarray and amplicon sequencing to characterize the cell line. Single cell analysis of metaphases revealed a high level of heterogeneity with a mode of 60 chromosomes. Cytogenetic results demonstrated chromosome abnormalities involving every chromosome in addition to a massive loss of heterozygosity, which accounts for 55.3% of the genome, consistent with the homozygous variants seen in the sequence analysis. We provide empirical data that the HuH-7 cell line is composed of highly heterogeneous cell populations, suggesting that besides cell line authentication, the quality of cell lines needs to be taken into consideration in the future use of tumor cell lines.
Collapse
Affiliation(s)
- Fumio Kasai
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, National Institutes of Biomedical Innovation, Health and Nutrition, Saito-Asagi 7-6-8, Ibaraki, Osaka, 567-0085, Japan.
| | - Noriko Hirayama
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, National Institutes of Biomedical Innovation, Health and Nutrition, Saito-Asagi 7-6-8, Ibaraki, Osaka, 567-0085, Japan
| | - Midori Ozawa
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, National Institutes of Biomedical Innovation, Health and Nutrition, Saito-Asagi 7-6-8, Ibaraki, Osaka, 567-0085, Japan
| | - Motonobu Satoh
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, National Institutes of Biomedical Innovation, Health and Nutrition, Saito-Asagi 7-6-8, Ibaraki, Osaka, 567-0085, Japan
| | - Arihiro Kohara
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, National Institutes of Biomedical Innovation, Health and Nutrition, Saito-Asagi 7-6-8, Ibaraki, Osaka, 567-0085, Japan
| |
Collapse
|
16
|
In-depth phenotypic characterization of multicellular tumor spheroids: Effects of 5-Fluorouracil. PLoS One 2017; 12:e0188100. [PMID: 29141026 PMCID: PMC5687732 DOI: 10.1371/journal.pone.0188100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/31/2017] [Indexed: 01/27/2023] Open
Abstract
MultiCellular Tumor Spheroids (MCTS), which mimic the 3-Dimensional (3D) organization of a tumor, are considered as better models than conventional cultures in 2-Dimensions (2D) to study cancer cell biology and to evaluate the response to chemotherapeutic drugs. A real time and quantitative follow-up of MCTS with simple and robust readouts to evaluate drug efficacy is still missing. Here, we evaluate the chemotherapeutic drug 5-Fluorouracil (5-FU) response on the growth and integrity of MCTS two days after treatment of MCTS and for three colorectal carcinoma cell lines with different cohesive properties (HT29, HCT116 and SW480). We found different sensitivity to 5-FU for the three CRC cell lines, ranging from high (SW480), intermediate (HCT116) and low (HT29) and the same hierarchy of CRC cell lines sensitivity is conserved in 2D. We also evidence that 5-FU has a strong impact on spheroid cohesion, with the apparition of a number of single detaching cells from the spheroid in a 5-FU dose- and cell line-dependent manner. We propose an innovative methodology for the chemosensitivity evaluation in 3D MCTS that recapitulates and regionalizes the 5-FU-induced changes within MCTS over time. These robust phenotypic read-outs could be easily scalable for high-throughput drug screening that may include different types of cancer cells to take into account tumor heterogeneity and resistance to treatment.
Collapse
|
17
|
Sharma A. Chemoresistance in cancer cells: exosomes as potential regulators of therapeutic tumor heterogeneity. Nanomedicine (Lond) 2017; 12:2137-2148. [DOI: 10.2217/nnm-2017-0184] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Drug resistance in cancer cells remains a fundamental challenge. Be it nontargeted or targeted drugs, the presence of intrinsic or acquired cancer cell resistance remains a great obstacle in chemotherapy. Conventionally, a spectrum of cellular mechanisms defines drug resistance including overexpression of antiapoptotic proteins and drug efflux pumps, mutations in target and synergistic activation of prosurvival pathways in tumor cells. In addition to these well-studied routes, exosome-induced chemoresistance is emerging as a novel mechanism. Mechanistically, exosomes impart resistance by direct drug export, transport of drug efflux pumps and miRNAs exchange among cells. Moreover, exosome signaling creates ‘therapeutic tumor heterogeneity’ and favorably condition tumor microenvironment. Here, we discuss exosomes’ role in chemoresistance and possibilities of developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Aman Sharma
- ExoCan Healthcare Technologies Pvt Ltd, L4, 400 NCL Innovation Park, Dr Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
18
|
Jolkinolide B induces apoptosis of colorectal carcinoma through ROS-ER stress-Ca 2+-mitochondria dependent pathway. Oncotarget 2017; 8:91223-91237. [PMID: 29207638 PMCID: PMC5710918 DOI: 10.18632/oncotarget.20077] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/26/2017] [Indexed: 01/09/2023] Open
Abstract
Colorectal carcinoma (CRC) remains one of the leading causes of death in cancer-related diseases. In this study, we aimed to investigate the anticancer effect of Jolkinolide B (JB), a bioactive diterpenoid component isolated from the dried roots of Euphorbia fischeriana Steud, on CRC cells and its underlying mechanisms. We found that JB suppressed the cell viability and colony formation of CRC cells, HT29 and SW620. Annexin V/PI assay revealed that JB induced apoptosis in CRC cells, which was further confirmed by the increased expression of cleaved-caspase3 and cleaved-PARP. iTRAQ-based quantitative proteomics was performed to identify JB-regulated proteins in CRC cells. Gene Ontology (GO) analysis revealed that these JB-regulated proteins were mainly involved in ER stress response, which was evidenced by the expression of ER stress marker proteins, HSP90, Bip and PDI. Moreover, we found that JB provoked the generation of reactive oxygen species (ROS), and that inhibition of the ROS generation with N-acetyl L-cysteine could reverse the JB-induced apoptosis. Confocal microscopy and flow cytometry showed that JB treatment enhanced intracellular and mitochondrial Ca2+ level and JC-1 assay revealed a loss of mitochondrial membrane potential in CRC after JB treatment. The mitochondrial Ca2+ uptake and depolarization can be blocked by Ruthenium Red (RuRed), an inhibitor of mitochondrial Ca2+ uniporter. Taken together, we demonstrated that JB exerts its anticancer effect by ER stress-Ca2+-mitochondria signaling, suggesting the promising chemotherapeutic potential of JB for the treatment of CRC.
Collapse
|