1
|
Jo JY, Kim JW, Noh ES, Kim YO, Gong SP, Kong HJ, Choi JH. Establishment and Characterization of OFT and OFO Cell Lines from Olive Flounder ( Paralichthys olivaceus) for Use as Feeder Cells. BIOLOGY 2025; 14:229. [PMID: 40136486 PMCID: PMC11939788 DOI: 10.3390/biology14030229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
Olive flounder (Paralichthys olivaceus) is a commercially important fish species in Japan, China, and the Republic of Korea. Despite numerous attempts to improve productivity, there have been no studies of in vitro germline stem cell (GSC) culture in this species. Here, olive flounder testicular and ovarian cell lines (OFT and OFO, respectively) were established and characterized. RT-PCR demonstrated that OFT and OFO expressed several gonadal somatic cell markers, including wt1 and fgf2, but lacked expression of germ cell markers, such as vasa, nanos2, and scp3. In addition, SNP analysis revealed that OFT originated from XY male P. olivaceus and OFO originated from XX female P. olivaceus. These results suggest that OFT was composed of Sertoli cells and OFO was composed of granulosa cells and theca cells. Finally, coculture of OFT or OFO with enriched male P. olivaceus GSCs isolated from the top 20% and 20-30% Percoll density gradient layers showed that GSCs were attached on both cell lines. In conclusion, we established P. olivaceus testicular and ovarian cell lines, which were expected to use for development of an in vitro GSC culture system.
Collapse
Affiliation(s)
- Ja Young Jo
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (J.Y.J.); (J.-W.K.); (E.S.N.); (Y.-O.K.); (H.J.K.)
| | - Ju-Won Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (J.Y.J.); (J.-W.K.); (E.S.N.); (Y.-O.K.); (H.J.K.)
| | - Eun Soo Noh
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (J.Y.J.); (J.-W.K.); (E.S.N.); (Y.-O.K.); (H.J.K.)
| | - Yong-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (J.Y.J.); (J.-W.K.); (E.S.N.); (Y.-O.K.); (H.J.K.)
| | - Seung Pyo Gong
- Major in Aquaculture and Applied Life Science, Division of Fisheries Life Science, Pukyong National University, Busan 48513, Republic of Korea;
| | - Hee Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (J.Y.J.); (J.-W.K.); (E.S.N.); (Y.-O.K.); (H.J.K.)
| | - Jae Hoon Choi
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (J.Y.J.); (J.-W.K.); (E.S.N.); (Y.-O.K.); (H.J.K.)
| |
Collapse
|
2
|
Zhao R, Zhang Y, Wang Q, Cao YM, Hou MX, Sun XQ, Yu ST, Chen YJ, Wang KK, Li JT. Generation of transgenic fish cell line with α-lactalbumin nanocarriers co-delivering Tol2 transposase mRNA and plasmids. iScience 2024; 27:110480. [PMID: 39156651 PMCID: PMC11326935 DOI: 10.1016/j.isci.2024.110480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/07/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024] Open
Abstract
Fish cells, such as grass carp (Ctenopharyngodon idella) kidney (CIK) cells, are harder to transfect than mammalian cells. There is a need for an efficient gene delivery system for fish cells. Here, we used CIK cell line as a model to develop a strategy to enhance RNA and plasmid DNA transfection efficiency using a nanocarrier generated from α-lactalbumin (α-NC). α-NC absorbed nucleic acid cargo efficiently and exhibited low cytotoxicity. Plasmid transfection was more efficient with α-NC than with liposomal transfection reagents. We used α-NC to co-transfect Tol2 transposase mRNA and a plasmid containing Cas9 and GFP, generating a stable transgenic CIK cell line. Genome and RNA sequencing revealed that the Cas9 and GFP fragments were successfully inserted into the genome of CIK cells and efficiently transcribed. In this study, we established an efficient transfection system for fish cells using α-NC, simplifying the process of generating stable transgenic fish cell lines.
Collapse
Affiliation(s)
- Ran Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Yan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Qi Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Yi-Ming Cao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Ming-Xi Hou
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Xiao-Qing Sun
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Shuang-Ting Yu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
- Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying-Jie Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Kai-Kuo Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jiong-Tang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| |
Collapse
|
3
|
Sathiyanarayanan A, Goswami M, Nagpure N, Babu P G, Das DK. Development and characterization of a new gill cell line from the striped catfish, Pangasianodon hypophthalmus (Sauvage, 1878). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:367-380. [PMID: 35169909 DOI: 10.1007/s10695-022-01053-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Cell lines as an in vitro model developed from different target organs of fish find their use in virus susceptibility, cytotoxicity, gene expression studies. The striped catfish, Pangasianodon hypophthalmus, is one of the main species in aquaculture, especially in Southeast Asian countries like Thailand, Indonesia, China, India, Bangladesh, and Vietnam. The present study reports the development of a new permanent cell line from the gills of P. hypophthalmus designated as PHG and its application in toxicological research. Leibovitz's L-15 cell culture medium supplemented with 15% fetal bovine serum (FBS) was used to maintain cell line PHG. The morphology of the PHG cell line was observed fibroblastic-like. PHG cells grew well at varying temperatures ranging from 24 to 30 °C with an optimum temperature of 28 °C. The PHG cell line was characterized using a sequence of mitochondrial cytochrome C oxidase subunit I, which authenticated the species of origin of the cell line. The cell line was transfected with a pEGFP-C1 plasmid, and the transfection reporter gene was successfully expressed 48 h post-transfection with 9% transfection efficiency. The toxicity assessment of two organophosphate pesticides, chlorpyrifos, and malathion using the PHG cell line revealed that the two organophosphate pesticides were cytotoxic to the cell line at varying concentrations.
Collapse
Affiliation(s)
- Arjunan Sathiyanarayanan
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri West, Mumbai, 400061, Maharashtra, India
| | - Mukunda Goswami
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri West, Mumbai, 400061, Maharashtra, India.
| | - Naresh Nagpure
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri West, Mumbai, 400061, Maharashtra, India
| | - Gireesh Babu P
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri West, Mumbai, 400061, Maharashtra, India
| | - Dhanjit Kumar Das
- Genetic Research Centre, National Institute for Research in Reproductive Health, Parel, Mumbai, 400012, Maharashtra, India
| |
Collapse
|
4
|
Li N, Guo L, Guo H. Establishment, characterization, and transfection potential of a new continuous fish cell line (CAM) derived from the muscle tissue of grass goldfish (Carassius auratus). In Vitro Cell Dev Biol Anim 2021; 57:912-931. [PMID: 34725799 DOI: 10.1007/s11626-021-00622-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/10/2021] [Indexed: 11/28/2022]
Abstract
A new continuous fish cell line (CAM) has been successfully derived from the muscle tissues of grass goldfish, Carassius auratus. The primary cell cultures were initiated by incomplete trypsinization first and then explant culture in a Leibovitz-15 medium supplemented with 15% fetal bovine serum and 10% fish muscle extract. It was found that the CAM cells were very sensitive to trypsinization and needed to be sub-cultured at a low trypsin concentration of 0.0625% to be able to go through the crisis of spontaneous immortalization transformation, and afterward a total of five derivative cell strains were isolated from the original CAM cell line. This spontaneous immortalization transformation event was recorded successively at passages 44-47, beginning with a large-scale apoptosis and senescence and followed by mitosis arrest and re-activation, thus designated as cell strain CAM-44A, 44B, 45A, 44B, and 47A. Now both the CAM cell line and strains had been sub-cultured for more than 89 times and could be well cryopreserved in the growth medium containing 5% dimethylsulfoxide. Chromosome analysis and COI gene analysis had confirmed the grass goldfish origin of these CAM cells. Transfection potential analysis indicated that Lipofectamine LTX and Xfect were two suitable transfection reagents to be used in the gene delivery of CAM cells with a transfection efficiencies up to 11±6% and 8±3% in the CAM cell lines, respectively. Among the five cell strains, CAM-47A showed the highest transfection potential with a transfection efficiency up to 28 ± 5%. This work will provide a useful cell source for works on the cell-based artificial fish meat production and functional studies of fish myogenesis-related genes.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Liwen Guo
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Huarong Guo
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
5
|
Kleefeldt JM, Pozarska A, Nardiello C, Pfeffer T, Vadász I, Herold S, Seeger W, Morty RE. Commercially available transfection reagents and negative control siRNA are not inert. Anal Biochem 2020; 606:113828. [PMID: 32745542 DOI: 10.1016/j.ab.2020.113828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 01/17/2023]
Abstract
The transfection of synthetic small interfering (si)RNA into cultured cells forms the basis of studies that use RNA interference (commonly referred to as "gene knockdown") to study the impact of loss of gene or protein expression on a biological pathway or process. In these studies, mock transfections (with transfection reagents alone), and the use of synthetic negative control (apparently inert) siRNA are both essential negative controls. This report reveals that three widely-used transfection reagents (X-tremeGENE™, HiPerFect, and Lipofectamine® 2000) and five commercially-available control siRNA (from Ambion, Sigma, Santa Cruz, Cell Signaling Technology, and Qiagen) are not inert in cell-culture studies. Both transfection reagents and control siRNA perturbed steady-state mRNA and protein levels in primary mouse lung fibroblasts and in NIH/3T3 cells (a widely-used mouse embryonic fibroblast cell-line), using components of the canonical transforming growth factor-β signaling machinery as a model system. Furthermore, transfection reagents and control siRNA reduced the viability and proliferation of both lung fibroblasts and NIH/3T3 cells. These data collectively provide a cautionary note to investigators to carefully consider the impact of control interventions, such as mock transfections and control siRNA, in RNA interference studies with synthetic siRNA.
Collapse
Affiliation(s)
- Jan M Kleefeldt
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Agnieszka Pozarska
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Claudio Nardiello
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Tilman Pfeffer
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany
| | - István Vadász
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany.
| |
Collapse
|