1
|
Vargas LN, Silveira MM, Franco MM. Epigenetic Reprogramming and Somatic Cell Nuclear Transfer. Methods Mol Biol 2023; 2647:37-58. [PMID: 37041328 DOI: 10.1007/978-1-0716-3064-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Epigenetics is an area of genetics that studies the heritable modifications in gene expression and phenotype that are not controlled by the primary sequence of DNA. The main epigenetic mechanisms are DNA methylation, post-translational covalent modifications in histone tails, and non-coding RNAs. During mammalian development, there are two global waves of epigenetic reprogramming. The first one occurs during gametogenesis and the second one begins immediately after fertilization. Environmental factors such as exposure to pollutants, unbalanced nutrition, behavioral factors, stress, in vitro culture conditions can negatively affect epigenetic reprogramming events. In this review, we describe the main epigenetic mechanisms found during mammalian preimplantation development (e.g., genomic imprinting, X chromosome inactivation). Moreover, we discuss the detrimental effects of cloning by somatic cell nuclear transfer on the reprogramming of epigenetic patterns and some molecular alternatives to minimize these negative impacts.
Collapse
Affiliation(s)
- Luna N Vargas
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Márcia M Silveira
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Maurício M Franco
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil.
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Kamimura S, Inoue K, Mizutani E, Kim JM, Inoue H, Ogonuki N, Miyamoto K, Ihashi S, Itami N, Wakayama T, Ito A, Nishino N, Yoshida M, Ogura A. Improved development of mouse somatic cell nuclear transfer embryos by chlamydocin analogues, class I and IIa histone deacetylase inhibitors†. Biol Reprod 2021; 105:543-553. [PMID: 33982061 PMCID: PMC8335354 DOI: 10.1093/biolre/ioab096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/29/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
In mammalian cloning by somatic cell nuclear transfer (SCNT), the treatment of reconstructed embryos with histone deacetylase (HDAC) inhibitors improves efficiency. So far, most of those used for SCNT are hydroxamic acid derivatives-such as trichostatin A-characterized by their broad inhibitory spectrum. Here, we examined whether mouse SCNT efficiency could be improved using chlamydocin analogues, a family of newly designed agents that specifically inhibit class I and IIa HDACs. Development of SCNT-derived embryos in vitro and in vivo revealed that four out of five chlamydocin analogues tested could promote the development of cloned embryos. The highest pup rates (7.1-7.2%) were obtained with Ky-9, similar to those achieved with trichostatin A (7.2-7.3%). Thus, inhibition of class I and/or IIa HDACs in SCNT-derived embryos is enough for significant improvements in full-term development. In mouse SCNT, the exposure of reconstructed oocytes to HDAC inhibitors is limited to 8-10 h because longer inhibition with class I inhibitors causes a two-cell developmental block. Therefore, we used Ky-29, with higher selectivity for class IIa than class I HDACs for longer treatment of SCNT-derived embryos. As expected, 24-h treatment with Ky-29 up to the two-cell stage did not induce a developmental block, but the pup rate was not improved. This suggests that the one-cell stage is a critical period for improving SCNT cloning using HDAC inhibitors. Thus, chlamydocin analogues appear promising for understanding and improving the epigenetic status of mammalian SCNT-derived embryos through their specific inhibitory effects on HDACs.
Collapse
Affiliation(s)
- Satoshi Kamimura
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan.,Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan.,Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kimiko Inoue
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Eiji Mizutani
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan.,Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan.,Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Jin-Moon Kim
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Hiroki Inoue
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Narumi Ogonuki
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Kei Miyamoto
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama-ken, Japan
| | - Shunya Ihashi
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama-ken, Japan
| | - Nobuhiko Itami
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Akihiro Ito
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.,RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Norikazu Nishino
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.,Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.,Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsuo Ogura
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| |
Collapse
|
4
|
Comparison of pregnancy rates with transfer of in vivo produced embryos derived using multiple ovulation and embryo transfer (MOET) with in vitro produced embryos by somatic cell nuclear transfer (SCNT) in the dromedary camel (Camelus dromedaries). Anim Reprod Sci 2019; 209:106132. [PMID: 31514928 DOI: 10.1016/j.anireprosci.2019.106132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/15/2019] [Accepted: 07/18/2019] [Indexed: 11/22/2022]
Abstract
In the present study, there was comparison of pregnancy rates with transfer of in vivo-produced embryos using multiple ovulation and embryo transfer (MOET) with in vitro-produced embryos by somatic cell nuclear transfer (SCNT) in dromedary camels. In vivo-produced embryos were collected from donors after super-stimulation of follicular development on day 7 after ovulation, while in vitro-derived embryos were produced using SCNT from in vivo-matured oocytes collected from camels after follicular development super-stimulation. As a result of estrous synchronization, all recipient camels for both groups were 1 day earlier in stage of estrous cycle than developmental status of embryos at the time of transfer. The animals into which embryos were transferred were monitored at 7-day intervals after embryo transfer for signs of pregnancy based on response to presence of a male and there was ultrasonic confirmation on days 35 and 60 subsequent to day of estrus in recipient animals. A greater proportion of recipients (P < 0.05) were considered pregnant based on response to male presence when there was transfer of MOET-(76.8 ± 3.2) compared with SCNT- (26.4 ± 2.4) derived embryos on day 14. There was no difference in pregnancy losses in subsequent weeks until day 60 between groups. There were also no differences in calving rates of females in which MOET- (91.7%) and SCNT- (93.3%) derived embryos were transferred. These results indicate pregnancies at day 60 with SCNT-derived embryos are sustained for the remainder of gestation periods similar to when there was transfer of MOET-derived embryos in dromedary camels.
Collapse
|