1
|
Zhou X, Cao H, Liao T, Hua W, Zhao R, Wang D, Deng H, Yang Y, Liu S, Ni G. Mechanosensitive lncRNA H19 promotes chondrocyte autophagy, but not pyroptosis, by targeting miR-148a in post-traumatic osteoarthritis. Noncoding RNA Res 2025; 10:163-176. [PMID: 39399379 PMCID: PMC11470567 DOI: 10.1016/j.ncrna.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 10/15/2024] Open
Abstract
OBJECTIVE Investigating whether mechanosensitive lncRNA H19 can directly target miR-148a to alleviate cartilage damage in post-traumatic osteoarthritis (PTOA). METHODS Thirty-two female rats were randomly divided into four groups: Sham-operated group (Sham group, n = 8), treadmill running group (R group, n = 8), anterior cruciate ligament transection (ACLT) group (ACLT group, n = 8), and ACLT + treadmill running group (ACLT + R group, n = 8). Histological evaluation was performed to observe the pathological changes in the cartilage of the rat knee. Micro-CT was performed to detect the bone morphological changes in the subchondral bone. RT-qPCR and Western-Blot were performed to detect changes in mRNA and protein levels of metabolic and inflammatory factors as well as changes in the expression of lncRNA H19 and miR-148a in cartilage. The Flexcell 5000™ Tension System was used to further validate that lncRNA H19 has mechanosensitivity in vitro. Finally, cell transfection techniques were used to knock down the expression of lncRNA H19 in chondrocytes to validate the regulatory role of lncRNA H19/miR-148a in cartilage metabolism. RESULTS ACLT combined with treadmill running aggravated the abnormal hyperplasia of subchondral bone in the lateral tibial plateau of the rat knee joint, disturbed the balance of cartilage metabolism, induced cartilage inflammatory response and chondrocyte pyroptosis, which eventually led to cartilage damage and PTOA. Importantly, we found that the expression of lncRNA H19 was significantly downregulated in the cartilage of the ACLT + R group. Bioinformatics analysis revealed that miR-148a may be a direct target of lncRNA H19. Subsequently, we focused on the mechanosensitive of lncRNA H19. Subsequently, moderate-intensity mechanical tension stress reversed the expression of lncRNA H19 and autophagy-related factors in inflammatory chondrocytes, while miR-148a showed an opposite expression trend, demonstrating that mechanosensitive lncRNA H19 may be involved in regulating the chondrocyte inflammatory response by targeting miR-148a and activating autophagy. Cell transfection experiments revealed that lncRNA H19 knockdown upregulated miR-148a expression and significantly inhibited the autophagy level of chondrocytes without significant alteration of chondrocyte pyroptosis, which in turn exacerbated the inflammatory response of chondrocytes. CONCLUSIONS Mechanosensitive lncRNA H19 can promote chondrocyte autophagy rather than pyroptosis by targeting miR-148a, thus alleviating cartilage damage in PTOA. LncRNA H19 may be a potential therapeutic target for PTOA.
Collapse
Affiliation(s)
- Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Hong Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Tao Liao
- Department of Rehabilitation Medicine, Chengdu Second People's Hospital, Chengdu, 610000, China
| | - Weizhong Hua
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Ruobing Zhao
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Huili Deng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Yajing Yang
- Department of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, 430070, China
| | - ShengYao Liu
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Guoxin Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| |
Collapse
|
2
|
Li Y, Du J, Deng S, Liu B, Jing X, Yan Y, Liu Y, Wang J, Zhou X, She Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct Target Ther 2024; 9:368. [PMID: 39715759 DOI: 10.1038/s41392-024-02069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiac development is a complex and intricate process involving numerous molecular signals and pathways. Researchers have explored cardiac development through a long journey, starting with early studies observing morphological changes and progressing to the exploration of molecular mechanisms using various molecular biology methods. Currently, advancements in stem cell technology and sequencing technology, such as the generation of human pluripotent stem cells and cardiac organoids, multi-omics sequencing, and artificial intelligence (AI) technology, have enabled researchers to understand the molecular mechanisms of cardiac development better. Many molecular signals regulate cardiac development, including various growth and transcription factors and signaling pathways, such as WNT signaling, retinoic acid signaling, and Notch signaling pathways. In addition, cilia, the extracellular matrix, epigenetic modifications, and hypoxia conditions also play important roles in cardiac development. These factors play crucial roles at one or even multiple stages of cardiac development. Recent studies have also identified roles for autophagy, metabolic transition, and macrophages in cardiac development. Deficiencies or abnormal expression of these factors can lead to various types of cardiac development abnormalities. Nowadays, congenital heart disease (CHD) management requires lifelong care, primarily involving surgical and pharmacological treatments. Advances in surgical techniques and the development of clinical genetic testing have enabled earlier diagnosis and treatment of CHD. However, these technologies still have significant limitations. The development of new technologies, such as sequencing and AI technologies, will help us better understand the molecular mechanisms of cardiac development and promote earlier prevention and treatment of CHD in the future.
Collapse
Affiliation(s)
- Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Jing
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuling Yan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Qi X, Yu L, Liu S, Zhou Y, Liu W, Liao W, Guo Q, Song X, Li J, Lin S, Dai C, Yan L, Li T, Zhang L, Zhao S, Tang J, Cai J, Liu Z, Zhu R, Long QY, Wang H. The expression profile analysis and functional prediction of lncRNAs in peripheral blood mononuclear cells in maintenance hemodialysis patients developing heart failure. Sci Rep 2024; 14:29577. [PMID: 39609580 PMCID: PMC11604924 DOI: 10.1038/s41598-024-81080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024] Open
Abstract
Heart failure (HF) is the leading cause of death in patients with maintenance hemodialysis (MHD). Biomarkers has an important guiding role in the early diagnosis, risk stratification, and prognostic assessment of HF. Increasing studies have indicated that long non-coding RNAs (lncRNAs) have played an indispensable role in the regulatory network of HF. This study was aiming to explore the expression profiles of lncRNAs in patients treated with MHD developing heart failure. Peripheral blood mononuclear cells were isolated from 4 hemodialysis patients with reduced ejection fraction (HFrEF) and 4 hemodialysis patients with preserved ejection fraction (HFpEF), respectively. The expression profile analysis of lncRNAs was performed by using Illumina Novaseq 6000 sequencer. Quantitative real time polymerase chain reaction (qRT-PCR) was used to verify the expression of representative differentially expressed lncRNAs. Based on lncRNA-miRNA-mRNA-KEGG network analysis, the potential role of candidate lncRNAs and their association with the severity of HF were further evaluated. In total, 1,429 differentially expressed lncRNAs were found between patients with HFrEF and patients with HFpEF, of which 613 were up-regulated and 816 were down-regulated (P < 0.05). Five candidate lncRNAs were screened out by a series of bioinformatic analyses. After being compared with miRBase, ENST00000561762, one of the 5 candidates, was considered the most likely lncRNA to be serving as a precursor for miRNA. Nine predicted target genes were found by further lncRNA-miRNA-mRNA-KEGG network analysis, and among which ITGB5 was enriched in the actin dynamics signaling pathway. In another cohort of hemodialysis patients, the expression of lncRNA ENST00000561762 was verified by qRT-PCR. Further analysis revealed that there was a strong correlation between left ventricular ejection fraction and ENST00000561762, proBNP, and 6-minute walk distance, respectively. LncRNAs expression profile was remarkably different in hemodialysis patients with HFrEF compared to those with HFpEF. Among which, lncRNA ENST00000561762 was considered as a promising biomarker for patients with HFrEF as it was predicted to be a miRNA precursor to regulate the actin dynamics signaling pathway.
Collapse
Affiliation(s)
- Xing Qi
- Department of Clinical Laboratory Medicine, Ziyang Central Hospital, Ziyang, 641300, Sichuan Province, China
| | - Lin Yu
- Department of Clinical Laboratory Medicine, Ziyang Central Hospital, Ziyang, 641300, Sichuan Province, China
| | - Shuai Liu
- Department of Clinical Laboratory Medicine, Ziyang Central Hospital, Ziyang, 641300, Sichuan Province, China
| | - Yujiao Zhou
- Department of Infectious Disease, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 401122, China
| | - Wenqing Liu
- Department of Clinical Laboratory Medicine, Ziyang Central Hospital, Ziyang, 641300, Sichuan Province, China
| | - Wei Liao
- Department of Clinical Laboratory Medicine, Ziyang Central Hospital, Ziyang, 641300, Sichuan Province, China
| | - Qin Guo
- Department of Clinical Laboratory Medicine, Ziyang Central Hospital, Ziyang, 641300, Sichuan Province, China
| | - Xuhui Song
- Department of Clinical Laboratory Medicine, Ziyang Central Hospital, Ziyang, 641300, Sichuan Province, China
| | - Jifeng Li
- Department of Clinical Laboratory Medicine, Ziyang Central Hospital, Ziyang, 641300, Sichuan Province, China
| | - Sheng Lin
- Department of Clinical Laboratory Medicine, Ziyang Central Hospital, Ziyang, 641300, Sichuan Province, China
| | - Chuanqiang Dai
- Department of Clinical Laboratory Medicine, Ziyang Central Hospital, Ziyang, 641300, Sichuan Province, China
| | - Lin Yan
- Department of Clinical Laboratory Medicine, Ziyang Central Hospital, Ziyang, 641300, Sichuan Province, China
| | - Tao Li
- Department of Clinical Laboratory Medicine, Ziyang Central Hospital, Ziyang, 641300, Sichuan Province, China
| | - Li Zhang
- Department of Clinical Laboratory Medicine, Ziyang Central Hospital, Ziyang, 641300, Sichuan Province, China
| | - Shucheng Zhao
- Department of Clinical Laboratory Medicine, Ziyang Central Hospital, Ziyang, 641300, Sichuan Province, China
| | - Juan Tang
- Department of Clinical Laboratory Medicine, Ziyang Central Hospital, Ziyang, 641300, Sichuan Province, China
| | - Jian Cai
- Department of Clinical Laboratory Medicine, Ziyang Central Hospital, Ziyang, 641300, Sichuan Province, China
| | - Zejiang Liu
- Department of Clinical Laboratory Medicine, Ziyang Central Hospital, Ziyang, 641300, Sichuan Province, China
| | - Ran Zhu
- Department of Clinical Laboratory Medicine, Ziyang Central Hospital, Ziyang, 641300, Sichuan Province, China
| | - Q-Y Long
- Department of Clinical Laboratory Medicine, Ziyang Central Hospital, Ziyang, 641300, Sichuan Province, China
| | - Huaguo Wang
- Department of Clinical Laboratory Medicine, Ziyang Central Hospital, Ziyang, 641300, Sichuan Province, China.
| |
Collapse
|
4
|
Kao TW, Chen HH, Lin J, Wang TL, Shen YA. PBX1 as a novel master regulator in cancer: Its regulation, molecular biology, and therapeutic applications. Biochim Biophys Acta Rev Cancer 2024; 1879:189085. [PMID: 38341110 DOI: 10.1016/j.bbcan.2024.189085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
PBX1 is a critical transcription factor at the top of various cell fate-determining pathways. In cancer, PBX1 stands at the crossroads of multiple oncogenic signaling pathways and mediates responses by recruiting a broad repertoire of downstream targets. Research thus far has corroborated the involvement of PBX1 in cancer proliferation, resisting apoptosis, tumor-associated neoangiogenesis, epithelial-mesenchymal transition (EMT) and metastasis, immune evasion, genome instability, and dysregulating cellular metabolism. Recently, our understanding of the functional regulation of the PBX1 protein has advanced, as increasing evidence has depicted a regulatory network consisting of transcriptional, post-transcriptional, and post-translational levels of control mechanisms. Furthermore, accumulating studies have supported the clinical utilization of PBX1 as a prognostic or therapeutic target in cancer. Preliminary results showed that PBX1 entails vast potential as a targetable master regulator in the treatment of cancer, particularly in those with high-risk features and resistance to other therapeutic strategies. In this review, we will explore the regulation, protein-protein interactions, molecular pathways, clinical application, and future challenges of PBX1.
Collapse
Affiliation(s)
- Ting-Wan Kao
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Hsiao-Han Chen
- Department of General Medicine, National Taiwan University Hospital, Taipei 100224, Taiwan
| | - James Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Tian-Li Wang
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB2, Room 306, Baltimore, MD 21231, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan.
| |
Collapse
|
5
|
Wang T, Li F, Lu Z. Ultra-conserved RNA: a novel biological tool with diagnostic and therapeutic potential. Discov Oncol 2023; 14:41. [PMID: 37036543 PMCID: PMC10086085 DOI: 10.1007/s12672-023-00650-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023] Open
Abstract
Ultra-conserved RNA (ucRNA) is a subset of long non-coding RNA, that is highly conserved among mice, rats and humans. UcRNA has attracted extensive attention in recent years for its potential biological significance in normal physiological function and diseases. However, due to the instability of RNA and the technical limitation, the function and mechanism of ucRNAs are largely unknown. Over the last two decades, researchers have made a lot of efforts to try to lift the veil of ucRNA in nervous, cardiovascular system and other systems as well as cancers. Since the concept of the glymphatic system is relatively new, we summarized here recent findings on the functions, regulation and the underlying mechanisms of ucRNAs in physiology and pathology. Meanwhile, pathology in some diseases is likely to contribute to abnormal expression of ucRNA in turn. We also discuss the technical challenges and bright prospects for future applications of ucRNAs in the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Tingye Wang
- Department of Basic Medicine and Medical Technology, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Feng Li
- Department of Basic Medicine and Medical Technology, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou, Jiangsu, China
| | - Zhanping Lu
- Department of Basic Medicine and Medical Technology, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou, Jiangsu, China.
| |
Collapse
|
6
|
Wang L, Tian Y, Cao Y, Ma Q, Zhao S. PBX1 attenuates H 2O 2-induced oxidant stress in human trabecular meshwork cells via promoting NANOG-mediated PI3K/AKT signaling pathway. Cell Stress Chaperones 2022; 27:673-684. [PMID: 36253638 PMCID: PMC9672266 DOI: 10.1007/s12192-022-01304-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/04/2022] [Indexed: 01/25/2023] Open
Abstract
Oxidative stress-induced excessive extracellular matrix (ECM) deposition in trabecular meshwork (TM) tissue is considered the major pathological procedure of glaucoma. This study aimed to explore the role and regulatory mechanism of pre-B-cell leukemia transcription factor 1 (PBX1) in H2O2-induced human trabecular meshwork cells (HTMCs). Expressions of PBX1, NANOG, ECM, and pathway-related factors were detected by qRT-PCR and western blot. Cell viability and apoptosis of HTMCs were measured using CCK-8 and flow cytometry assays. Reactive oxygen species (ROS), superoxide dismutase (SOD), and L-glutathione (GSH) levels were detected to evaluate oxidative stress. Through luciferase reporter assay, the association between PBX1 and NANOG was verified. Results presented that PBX1 was significantly upregulated in H2O2-induced HTMCs. Functionally, PBX1 and NANOG promoted cell viability, inhibited cell apoptosis and ECM deposition, suppressed ROS accumulation, and enhanced the productions of SOD and GSH in H2O2-stimulated HTMCs, while PBX1 inhibition showed the opposite effects. In addition, PBX1 promoted the transcription of NANOG by upregulating the promoter activity of NANOG which activated the PI3K-AKT signaling pathway. What's more, the inhibitions of PI3K-AKT signaling pathway or NANOG reversed the protective effect of PBX1 on H2O2-stimulated HTMCs. In summary, our study firstly revealed that PBX1 attenuated the oxidative damage in HTMCs via regulating NANOG-mediated PI3K/AKT signaling, suggesting that PBX1 might be a potential treatment target for glaucoma patients.
Collapse
Affiliation(s)
- Liang Wang
- Department of Ophthalmology, Xi'an No. 1 Hospital, No. 30 Powder Lane South Street, Xi'an, 710002, China
| | - Ying Tian
- Department of Ophthalmology, Xi'an No. 1 Hospital, No. 30 Powder Lane South Street, Xi'an, 710002, China
| | - Yan Cao
- Department of Ophthalmology, Xi'an No. 1 Hospital, No. 30 Powder Lane South Street, Xi'an, 710002, China
| | - Qiang Ma
- Department of Ophthalmology, Xi'an No. 1 Hospital, No. 30 Powder Lane South Street, Xi'an, 710002, China
| | - Shuai Zhao
- Department of Ophthalmology, Xi'an No. 1 Hospital, No. 30 Powder Lane South Street, Xi'an, 710002, China.
| |
Collapse
|
7
|
Comprehensive Overview of Non-coding RNAs in Cardiac Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:197-211. [PMID: 32285413 DOI: 10.1007/978-981-15-1671-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cardiac development in the human embryo is characterized by the interactions of several transcription and growth factors leading the heart from a primordial linear tube into a synchronous contractile four-chamber organ. Studies on cardiogenesis showed that cell proliferation, differentiation, fate specification and morphogenesis are spatiotemporally coordinated by cell-cell interactions and intracellular signalling cross-talks. In recent years, research has focused on a class of inter- and intra-cellular modulators called non-coding RNAs (ncRNAs), transcribed from the noncoding portion of the DNA and involved in the proper formation of the heart. In this chapter, we will summarize the current state of the art on the roles of three major forms of ncRNAs [microRNAs (miRNAs), long ncRNAs (lncRNAs) and circular RNAs (circRNAs)] in orchestrating the four sequential phases of cardiac organogenesis.
Collapse
|
8
|
Liu H, Hu Y, Yin J, Yan X, Chen W, Wang X, Han S, Yu Z, Li M. Effects of long non-coding RNA uc.245 on cardiomyocyte-like differentiation in P19 cells via FOG2. Gene 2019; 694:83-92. [PMID: 30716443 DOI: 10.1016/j.gene.2018.12.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/02/2018] [Accepted: 12/27/2018] [Indexed: 01/07/2023]
Abstract
Each year, cardiac diseases may cause a high morbidity and mortality worldwide. Long non-coding RNAs (lncRNAs) that contained ultra-conserved elements (UCEs) may play important roles on cardiomyocytes differentiation. Further investigations underlying mechanisms of lncRNA-UC regulating embryonic heart development are necessary. In this study, we investigated the effects of lnc-uc.245 on proliferation, migration, apoptosis, and cardiomyocyte-like differentiation in P19 cells with DMSO stimulation, and hypothesized that lnc-uc.245 would influence cardiomyocytes differentiation via FOG2. Lentiviral vectors of pGPU6/GFP/Neo-uc.245 and pGPU6/GFP/Neo-shRNA-uc.245 were respectively transfected into P19 cells to overexpress or silence uc.245. MTT assay, Annexin V-FITC/PI double-staining, scratch test and transwell assay were performed and the results showed that uc.245 overexpression could significantly suppress P19 cell proliferation, migration, cardiomyocyte-like differentiation but promote cell apoptosis. Contrarily, sh-uc.245 treatment caused the opposite changes. Uc.245 overexpression obviously downregulated the expression of cardiomyogenic-specific molecular markers (cTnI, ANP, α-MHC, Nkx2.5, GATA4, MEF2C) but remarkably upregulated the expression of FOG2. Subsequently, we transfected the recombinant vectors loaded FOG2 or shRRNA-FOG2 into P19 cells to further address the functional significance of FOG2 in uc.245-regulated cardiomyocyte-like differentiation. Interestingly, we found that overexpressing of FOG2 promoted cell proliferation, migration, and inhibited apoptosis both in uc.245 overexpressed and silenced P19 cells, especially in uc.245 silenced cell line. In addition, sh-FOG2 promoted cardiomyocyte-like differentiation and upregulated the expression of cardiomyogenic-specific markers at the gene and protein levels both in uc.245 overexpressed and silenced P19 cells. Similarly, this upregulation effect of sh-FOG2 was more obvious after uc.245 silencing. These findings suggest that FOG2 is a key mediator during uc.245-regulated differentiation of P19 cells into cardiomyocytes. It is expected that lnc-uc.245/FOG2 will become a promising therapeutic target for cardiac diseases.
Collapse
Affiliation(s)
- Heng Liu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, No. 123 Tian Fei Xiang, Mo Chou Road, Nanjing 210004, Jiangsu Province, China
| | - Yin Hu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, No. 123 Tian Fei Xiang, Mo Chou Road, Nanjing 210004, Jiangsu Province, China
| | - Jing Yin
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, No. 123 Tian Fei Xiang, Mo Chou Road, Nanjing 210004, Jiangsu Province, China
| | - Xiangyun Yan
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, No. 123 Tian Fei Xiang, Mo Chou Road, Nanjing 210004, Jiangsu Province, China
| | - Wenjuan Chen
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, No. 123 Tian Fei Xiang, Mo Chou Road, Nanjing 210004, Jiangsu Province, China
| | - Xingyun Wang
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, No. 123 Tian Fei Xiang, Mo Chou Road, Nanjing 210004, Jiangsu Province, China
| | - Shuping Han
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, No. 123 Tian Fei Xiang, Mo Chou Road, Nanjing 210004, Jiangsu Province, China
| | - Zhangbin Yu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, No. 123 Tian Fei Xiang, Mo Chou Road, Nanjing 210004, Jiangsu Province, China.
| | - Mengmeng Li
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, No. 123 Tian Fei Xiang, Mo Chou Road, Nanjing 210004, Jiangsu Province, China.
| |
Collapse
|
9
|
|