1
|
Bartmański M, Pawłowski Ł, Knabe A, Mania S, Banach-Kopeć A, Sakowicz-Burkiewicz M, Ronowska A. The Effect of Marginal Zn 2+ Excess Released from Titanium Coating on Differentiation of Human Osteoblastic Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48412-48427. [PMID: 39213619 DOI: 10.1021/acsami.4c13529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Composite coatings based on chitosan and zinc nanoparticles (ZnNPs) were successfully produced on Ti13Zr13Nb substrates by cathodic electrophoretic deposition (EPD). The unfavorable phenomenon of water electrolysis-induced nonuniformity was reduced by applying a low voltage (20 V) and a short deposition time (1 min). Surface analysis (roughness and hydrophilicity) reveals the potential of these coatings for enhancing cell attachment and bone-implant integration. However, there is a concern about adhesion and strength; therefore, incorporating ZnNPs shows promise for enhancing mechanical properties, suggesting opportunities for further optimization of the process. The aim of this work was to investigate whether Zn2+ released from coating yields overt cellular impairment. hFOB1.19 osteoblastic cells were used as a model in this study. A subtoxic, 0.125 mmol/L, Zn concentration did not cause significant negative changes in cultured osteoblastic cells, as there was no significant change in their viability and their mitochondrial metabolism. Moreover, the alkaline phosphatase and lactate dehydrogenase activities were aggravated. However, a high, over 0.175 mmol/L, Zn2+ concentration caused total cell death. This was caused by the inhibition of mitochondrial enzymes' activities. Our data indicate that composite coatings releasing Zn2+ may be used as the differentiating factor toward osteoblastic cells.
Collapse
Affiliation(s)
- Michał Bartmański
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Łukasz Pawłowski
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Agata Knabe
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Szymon Mania
- Department of Chemistry, Technology and Biotechnology of Food, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Adrianna Banach-Kopeć
- Department of Chemistry, Technology and Biotechnology of Food, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | | | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdańsk,80-211 Gdańsk, Poland
| |
Collapse
|
2
|
Sun Y, Zhang C, Ma Q, Yu X, Gao X, Zhang H, Shi Y, Li Y, He X. MiR-34a-HK1 signal axis retards bone marrow mesenchymal stem cell senescence via ameliorating glycolytic metabolism. Stem Cell Res Ther 2024; 15:238. [PMID: 39080798 PMCID: PMC11290008 DOI: 10.1186/s13287-024-03857-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are one of the most widely studied adult stem cells, while MSC replicative senescence occurs with serial expansion in vitro. We determined whether miR-34a can regulate MSC senescence by directly targeting glycolytic key enzymes to influence glycolysis. METHODS Detected the effects of miR-34a on MSC senescence and glycolytic metabolism through gene manipulation. Bioinformatics prediction and luciferase reporter assay were applied to confirm that HK1 is a direct target of miR-34a. The underlying regulatory mechanism of miR-34a targeting HK1 in MSC senescence was further explored by a cellular function recovery experiment. RESULTS In the current study, we revealed that miR-34a over-expression exacerbated senescence-associated characteristics and impaired glycolytic metabolism. Then we identified hexokinase1 (HK1) as a direct target gene of miR-34a. And HK1 replenishment reversed MSC senescence and reinforced glycolysis. In addition, miR-34a-mediated MSC senescence and lower glycolytic levels were evidently rescued following the co-treatment with HK1 over-expression. CONCLUSION The miR-34a-HK1 signal axis can alleviate MSC senescence via enhancing glycolytic metabolism, which possibly provides a novel mechanism for MSC senescence and opens up new possibilities for delaying and suppressing the occurrence and development of aging and age-related diseases.
Collapse
Affiliation(s)
- Yanan Sun
- The Key Laboratory of Pathobiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Chang Zhang
- The Key Laboratory of Pathobiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Qianhui Ma
- The Key Laboratory of Pathobiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Xiao Yu
- The Key Laboratory of Pathobiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Xingyu Gao
- The Key Laboratory of Pathobiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Haiying Zhang
- The Key Laboratory of Pathobiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yan Li
- Division of Orthopedics and Biotechnology, Department for Clinical Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Xu He
- The Key Laboratory of Pathobiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
3
|
Nantakeeratipat T, Fujihara C, Nogimori T, Matsumoto M, Yamamoto T, Murakami S. Lysosomal acid lipase regulates bioenergetic process during the cytodifferentiation of human periodontal ligament cells. Biochem Biophys Res Commun 2023; 662:84-92. [PMID: 37099814 DOI: 10.1016/j.bbrc.2023.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
Lipid metabolism is one of energy metabolic pathways that produce adenosine triphosphate (ATP). In this pathway, lysosomal acid lipase (LAL) encoded by Lipase A (LIPA), plays an important role in catalyzing lipids to fatty acids (FAs), which drive oxidative phosphorylation (OXPHOS) and generate ATP. Previously, we found that a LIPA single nucleotide polymorphism rs143793106, which decreases the LAL activity, suppressed the cytodifferentiation of human periodontal ligament (HPDL) cells. However, the mechanisms underlying that suppression are still not fully clarified. Thus, we aimed to investigate the mechanisms regulating the cytodifferentiation of HPDL cells by LAL in terms of energy metabolism. We performed the osteogenic induction of HPDL cells with or without Lalistat-2, a LAL inhibitor. To visualize lipid droplet (LD) utilization, we performed confocal microscopy on HPDL cells. We also performed real-time PCR to analyze the gene expression of calcification-related and metabolism-related genes. Furthermore, we measured the ATP production rate from two major energy production pathways, OXPHOS and glycolysis, and OXPHOS-related parameters of HPDL cells during their cytodifferentiation. We found that LDs were utilized during the cytodifferentiation of HPDL cells. Alkaline phosphatase (ALPL), collagen type 1 alpha 1 chain (COL1A1), ATP synthase F1 subunit alpha (ATP5F1A), and carnitine palmitoyltransferase 1A (CPT1A) mRNA expressions were upregulated, whereas lactate dehydrogenase A (LDHA) mRNA expression was downregulated. Additionally, total ATP production rate was significantly increased. In contrast, in the presence of Lalistat-2, LD utilization was inhibited and ALPL, COL1A1, and ATP5F1A mRNA expression was downregulated. Additionally, ATP production rate and spare respiratory capacity of the OXPHOS pathway were decreased in HPDL cells during their cytodifferentiation. Collectively, the defect of LAL in HPDL cells decreased LD utilization and OXPHOS capacity, resulting in reduced energy to sustain the adequate ATP production required for the cytodifferentiation of HPDL cells. Thus, LAL is important for periodontal tissue homeostasis as a regulator of bioenergetic process of HPDL cells.
Collapse
Affiliation(s)
- Teerachate Nantakeeratipat
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan; Department of Conservative Dentistry and Prosthodontics, Faculty of Dentistry, Srinakharinwirot University, 114 Soi Sukhumvit 23, Khlong Toei Nuea, Watthana, Bangkok, 10110, Thailand.
| | - Chiharu Fujihara
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Takuto Nogimori
- Laboratory of Immunosenescence, Center for Vaccine & Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.
| | - Masahiro Matsumoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Takuya Yamamoto
- Laboratory of Immunosenescence, Center for Vaccine & Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
4
|
Deng X, Kato H, Taguchi Y, Nakata T, Umeda M. Intracellular glucose starvation inhibits osteogenic differentiation in human periodontal ligament cells. J Periodontal Res 2023; 58:607-620. [PMID: 36883427 DOI: 10.1111/jre.13112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Periodontal ligament cells (PDLCs), as mesenchymal cells in the oral cavity, are closely linked to periodontal tissue regeneration. However, the effect of local glucose deficiency on periodontal tissue regeneration, such as immediately post-surgery, remains unknown. OBJECTIVE In the present study, we investigated the effect of a low-glucose environment on the proliferation and osteogenic differentiation of PDLCs. MATERIALS AND METHODS We used media with five glucose concentrations (100, 75, 50, 25, and 0 mg/dL) and focused on the effects of a low-glucose environment on the proliferation, osteogenic differentiation, and autophagy of PDLCs. Additionally, we focused on changes in lactate production in a low-glucose environment and investigated the involvement of lactate with AZD3965, a monocarboxylate transporter-1 (MCT-1) inhibitor. RESULTS The low-glucose environment inhibited PDLCs proliferation, migration, and osteogenic differentiation, and induced the expression of the autophagy-related factors LC3 and p62. Lactate and ATP production were decreased under low-glucose conditions. The addition of AZD3965 (MCT-1 inhibitor) in normal glucose conditions caused a similar trend as in low-glucose conditions on PDLCs. CONCLUSION Our results suggest lactate production through glucose metabolism in the osteogenic differentiation of PDLCs. A low-glucose environment decreased lactate production, inhibiting cell proliferation, migration, and osteogenic differentiation and inducing autophagy in PDLCs.
Collapse
Affiliation(s)
- Xin Deng
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | - Hirohito Kato
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | - Yoichiro Taguchi
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | - Takaya Nakata
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| |
Collapse
|
5
|
Matsumoto M, Fujihara C, Nantakeeratipat T, Kitagaki J, Yamamoto Y, Yamada S, Kitamura M, Murakami S. Lipase-a single-nucleotide polymorphism rs143793106 is associated with increased risk of aggressive periodontitis by negative influence on the cytodifferentiation of human periodontal ligament cells. J Periodontal Res 2023; 58:175-183. [PMID: 36494917 DOI: 10.1111/jre.13079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 10/30/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVE Aggressive periodontitis (AgP) is characterized by general health and rapid destruction of periodontal tissue. The familial aggregation of this disease highlights the involvement of genetic factors in its pathogeny. We conducted a genome-wide association study (GWAS) to identify AgP-related genes in a Japanese population, and the lipid metabolism-related gene, lipase-a, lysosomal acid type (LIPA), was suggested as an AgP candidate gene. However, there is no report about the expression and function(s) of LIPA in periodontal tissue. Hence, we studied the involvement of how LIPA and its single-nucleotide polymorphism (SNP) rs143793106 in AgP by functional analyses of LIPA and its SNP in human periodontal ligament (HPDL) cells. MATERIALS AND METHODS GWAS was performed using the genome database of Japanese AgP patients, and the GWAS result was confirmed using Sanger sequencing. We examined the mRNA expression level of LIPA and the protein expression level of the encoded protein lysosomal acid lipase (LAL) in periodontium-composing cells using conventional and real-time polymerase chain reaction (PCR) and western blotting, respectively. Lentiviral vectors expressing LIPA wild-type (LIPA WT) and LIPA SNP rs143793106 (LIPA mut) were transfected into HPDL cells. Western blotting was performed to confirm the transfection. LAL activity of transfected HPDL cells was determined using the lysosomal acid lipase activity assay. Transfected HPDL cells were cultured in mineralization medium. During the cytodifferentiation of transfected HPDL cells, mRNA expression of calcification-related genes, alkaline phosphatase (ALPase) activity and calcified nodule formation were assessed using real-time PCR, ALPase assay, and alizarin red staining, respectively. RESULTS The GWAS study identified 11 AgP-related candidate genes, including LIPA SNP rs143793106. The minor allele frequency of LIPA SNP rs143793106 in AgP patients was higher than that in healthy subjects. LIPA mRNA and LAL protein were expressed in HPDL cells; furthermore, they upregulated the cytodifferentiation of HPDL cells. LAL activity was lower in LIPA SNP-transfected HPDL cells during cytodifferentiation than that in LIPA WT-transfected HPDL cells. In addition, ALPase activity, calcified nodule formation, and calcification-related gene expression levels were lower during cytodifferentiation in LIPA SNP-transfected HPDL cells than those in LIPA WT-transfected HPDL cells. CONCLUSION LIPA, identified as an AgP-related gene in a Japanese population, is expressed in HPDL cells and is involved in regulating cytodifferentiation of HPDL cells. LIPA SNP rs143793106 suppressed cytodifferentiation of HPDL cells by decreasing LAL activity, thereby contributing to the development of AgP.
Collapse
Affiliation(s)
- Masahiro Matsumoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Chiharu Fujihara
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | | | - Jirouta Kitagaki
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yu Yamamoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Satoru Yamada
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Masahiro Kitamura
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
6
|
Yan L, Liao L, Su X. Role of mechano-sensitive non-coding RNAs in bone remodeling of orthodontic tooth movement: recent advances. Prog Orthod 2022; 23:55. [PMID: 36581789 PMCID: PMC9800683 DOI: 10.1186/s40510-022-00450-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/15/2022] [Indexed: 12/31/2022] Open
Abstract
Orthodontic tooth movement relies on bone remodeling and periodontal tissue regeneration in response to the complicated mechanical cues on the compressive and tensive side. In general, mechanical stimulus regulates the expression of mechano-sensitive coding and non-coding genes, which in turn affects how cells are involved in bone remodeling. Growing numbers of non-coding RNAs, particularly mechano-sensitive non-coding RNA, have been verified to be essential for the regulation of osteogenesis and osteoclastogenesis and have revealed how they interact with signaling molecules to do so. This review summarizes recent findings of non-coding RNAs, including microRNAs and long non-coding RNAs, as crucial regulators of gene expression responding to mechanical stimulation, and outlines their roles in bone deposition and resorption. We focused on multiple mechano-sensitive miRNAs such as miR-21, - 29, -34, -103, -494-3p, -1246, -138-5p, -503-5p, and -3198 that play a critical role in osteogenesis function and bone resorption. The emerging roles of force-dependent regulation of lncRNAs in bone remodeling are also discussed extensively. We summarized mechano-sensitive lncRNA XIST, H19, and MALAT1 along with other lncRNAs involved in osteogenesis and osteoclastogenesis. Ultimately, we look forward to the prospects of the novel application of non-coding RNAs as potential therapeutics for tooth movement and periodontal tissue regeneration.
Collapse
Affiliation(s)
- Lichao Yan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry and Engineering Research Center of Oral Translational Medicine and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Li Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry and Engineering Research Center of Oral Translational Medicine and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoxia Su
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry and Engineering Research Center of Oral Translational Medicine and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Energy Metabolism and Lipidome Are Highly Regulated during Osteogenic Differentiation of Dental Follicle Cells. Stem Cells Int 2022; 2022:3674931. [PMID: 35903407 PMCID: PMC9315453 DOI: 10.1155/2022/3674931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Dental follicle cells (DFCs) are stem/progenitor cells of the periodontium and give rise to alveolar osteoblasts. However, understanding of the molecular mechanisms of osteogenic differentiation, which is required for cell-based therapies, is delimited. This study is aimed at analyzing the energy metabolism during the osteogenic differentiation of DFCs. Human DFCs were cultured, and osteogenic differentiation was induced by either dexamethasone or bone morphogenetic protein 2 (BMP2). Previous microarray data were reanalyzed to examine pathways that are regulated after osteogenic induction. Expression and activity of metabolic markers were evaluated by western blot analysis and specific assays, relative amount of mitochondrial DNA was measured by real-time quantitative polymerase chain reaction, the oxidative state of cells was determined by a glutathione assay, and the lipidome of cells was analyzed via mass spectrometry (MS). Moreover, osteogenic markers were analyzed after the inhibition of fatty acid synthesis by 5-(tetradecyloxy)-2-furoic acid or C75. Pathway enrichment analysis of microarray data revealed that carbon metabolism was amongst the top regulated pathways after osteogenic induction in DFCs. Further analysis showed that enzymes involved in glycolysis, citric acid cycle, mitochondrial activity, and lipid metabolism are differentially expressed during differentiation, with most markers upregulated and more markedly after induction with dexamethasone compared to BMP2. Moreover, the cellular state was more oxidized, and mitochondrial DNA was distinctly upregulated during the second half of differentiation. Besides, MS of the lipidome revealed higher lipid concentrations after osteogenic induction, with a preference for species with lower numbers of C-atoms and double bonds, which indicates a de novo synthesis of lipids. Concordantly, inhibition of fatty acid synthesis impeded the osteogenic differentiation of DFCs. This study demonstrates that energy metabolism is highly regulated during osteogenic differentiation of DFCs including changes in the lipidome suggesting enhanced de novo synthesis of lipids, which are required for the differentiation process.
Collapse
|
8
|
Zhu M, Fan Z. The role of the Wnt signalling pathway in the energy metabolism of bone remodelling. Cell Prolif 2022; 55:e13309. [PMID: 35811348 DOI: 10.1111/cpr.13309] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Bone remodelling is necessary to repair old and impaired bone caused by aging and its effects. Injury in the process of bone remodelling generally leads to the development of various bone diseases. Energy metabolism plays crucial roles in bone cell formation and function, the disorder of which will disrupt the balance between bone formation and bone resorption. MATERIALS AND METHODS Here, we review the intrinsic interactions between bone remodelling and energy metabolism and the role of the Wnt signalling pathway. RESULTS We found a close interplay between metabolic pathways and bone homeostasis, demonstrating that bone plays an important role in the regulation of energy balance. We also discovered that Wnt signalling is associated with multiple biological processes regulating energy metabolism in bone cells. CONCLUSIONS Thus, targeted regulation of Wnt signalling and the recovery of the energy metabolism function of bone cells are key means for the treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Mengyuan Zhu
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Yi C, Yu AM. MicroRNAs in the Regulation of Solute Carrier Proteins Behind Xenobiotic and Nutrient Transport in Cells. Front Mol Biosci 2022; 9:893846. [PMID: 35755805 PMCID: PMC9220936 DOI: 10.3389/fmolb.2022.893846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Altered metabolism, such as aerobic glycolysis or the Warburg effect, has been recognized as characteristics of tumor cells for almost a century. Since then, there is accumulating evidence to demonstrate the metabolic reprogramming of tumor cells, addiction to excessive uptake and metabolism of key nutrients, to support rapid proliferation and invasion under tumor microenvironment. The solute carrier (SLC) superfamily transporters are responsible for influx or efflux of a wide variety of xenobiotic and metabolites that are needed for the cells to function, as well as some medications. To meet the increased demand for nutrients and energy, SLC transporters are frequently dysregulated in cancer cells. The SLCs responsible for the transport of key nutrients for cancer metabolism and energetics, such as glucose and amino acids, are of particular interest for their roles in tumor progression and metastasis. Meanwhile, rewired metabolism is accompanied by the dysregulation of microRNAs (miRNAs or miRs) that are small, noncoding RNAs governing posttranscriptional gene regulation. Studies have shown that many miRNAs directly regulate the expression of specific SLC transporters in normal or diseased cells. Changes of SLC transporter expression and function can subsequently alter the uptake of nutrients or therapeutics. Given the important role for miRNAs in regulating disease progression, there is growing interest in developing miRNA-based therapies, beyond serving as potential diagnostic or prognostic biomarkers. In this article, we discuss how miRNAs regulate the expression of SLC transporters and highlight potential influence on the supply of essential nutrients for cell metabolism and drug exposure toward desired efficacy.
Collapse
Affiliation(s)
- Colleen Yi
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Osteoblasts are responsible for bone matrix production during bone development and homeostasis. Much is known about the transcriptional regulation and signaling pathways governing osteoblast differentiation. However, less is known about how osteoblasts obtain or utilize nutrients to fulfill the energetic demands associated with osteoblast differentiation and bone matrix synthesis. The goal of this review is to highlight and discuss what is known about the role and regulation of bioenergetic metabolism in osteoblasts with a focus on more recent studies. RECENT FINDINGS Bioenergetic metabolism has emerged as an important regulatory node in osteoblasts. Recent studies have begun to identify the major nutrients and bioenergetic pathways favored by osteoblasts as well as their regulation during differentiation. Here, we highlight how osteoblasts obtain and metabolize glucose, amino acids, and fatty acids to provide energy and other metabolic intermediates. In addition, we highlight the signals that regulate nutrient uptake and metabolism and focus on how energetic metabolism promotes osteoblast differentiation. Bioenergetic metabolism provides energy and other metabolites that are critical for osteoblast differentiation and activity. This knowledge contributes to a more comprehensive understanding of osteoblast biology and may inform novel strategies to modulate osteoblast differentiation and bone anabolism in patients with bone disorders.
Collapse
Affiliation(s)
- Leyao Shen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guoli Hu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Courtney M Karner
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
11
|
Fujihara C, Nantakeeratipat T, Murakami S. Energy Metabolism in Osteogenic Differentiation and Reprogramming: A Possible Future Strategy for Periodontal Regeneration. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.815140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Energy metabolism is crucial in stem cells as they harbor various metabolic pathways depending on their developmental stages. Moreover, understanding the control of their self-renewal or differentiation via manipulation of their metabolic state may yield novel regenerative therapies. Periodontal ligament (PDL) cells existing between the tooth and alveolar bone are crucial for maintaining homeostasis in the periodontal tissue. In addition, they play a pivotal role in periodontal regeneration, as they possess the properties of mesenchymal stem cells and are capable of differentiating into osteogenic cells. Despite these abilities, the treatment outcome of periodontal regenerative therapy remains unpredictable because the biological aspects of PDL cells and the mechanisms of their differentiation remain unclear. Recent studies have revealed that metabolism and factors affecting metabolic pathways are involved in the differentiation of PDL cells. Furthermore, understanding the metabolic profile of PDL cells could be crucial in manipulating the differentiation of PDL cells. In this review, first, we discuss the energy metabolism in osteoblasts and stem cells to understand the metabolism of PDL cells. Next, we summarize the metabolic preferences of PDL cells during their maintenance and cytodifferentiation. The perspectives discussed have potential applicability for creating a platform for reliable regenerative therapies for periodontal tissue.
Collapse
|
12
|
Groven RVM, van Koll J, Poeze M, Blokhuis TJ, van Griensven M. miRNAs Related to Different Processes of Fracture Healing: An Integrative Overview. Front Surg 2021; 8:786564. [PMID: 34869574 PMCID: PMC8639603 DOI: 10.3389/fsurg.2021.786564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/25/2021] [Indexed: 12/21/2022] Open
Abstract
Fracture healing is a complex, dynamic process that is directed by cellular communication and requires multiple cell types, such as osteoblasts, osteoclasts, and immune cells. Physiological fracture healing can be divided into several phases that consist of different processes, such as angiogenesis, osteogenesis, and bone resorption/remodelling. This is needed to guarantee proper bone regeneration after fracture. Communication and molecular regulation between different cell types and within cells is therefore key in successfully orchestrating these processes to ensure adequate bone healing. Among others, microRNAs (miRNAs) play an important role in cellular communication. microRNAs are small, non-coding RNA molecules of ~22 nucleotides long that can greatly influence gene expression by post-transcriptional regulation. Over the course of the past decade, more insights have been gained in the field of miRNAs and their role in cellular signalling in both inter- and intracellular pathways. The interplay between miRNAs and their mRNA targets, and the effect thereof on different processes and aspects within fracture healing, have shown to be interesting research topics with possible future diagnostic and therapeutic potential. Considering bone regeneration, research moreover focusses on specific microRNAs and their involvement in individual pathways. However, it is required to combine these data to gain more understanding on the effects of miRNAs in the dynamic process of fracture healing, and to enhance their translational application in research, as well as in the clinic. Therefore, this review aims to provide an integrative overview on miRNAs in fracture healing, related to several key aspects in the fracture healing cascade. A special focus will be put on hypoxia, angiogenesis, bone resorption, osteoclastogenesis, mineralization, osteogenesis, osteoblastogenesis, osteocytogenesis, and chondrogenesis.
Collapse
Affiliation(s)
- Rald V M Groven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands.,Division of Traumasurgery, Department of Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Johan van Koll
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Martijn Poeze
- Division of Traumasurgery, Department of Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Taco J Blokhuis
- Division of Traumasurgery, Department of Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
13
|
Meng X, Wang W, Wang X. MicroRNA-34a and microRNA-146a target CELF3 and suppress the osteogenic differentiation of periodontal ligament stem cells under cyclic mechanical stretch. J Dent Sci 2021; 17:1281-1291. [PMID: 35784124 PMCID: PMC9236897 DOI: 10.1016/j.jds.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/17/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
| | | | - Xueling Wang
- Corresponding author. Department of Stomatology, Aerospace Center Hospital, 15 Yuquan Road, Haidian District, Beijing 100049, PR China.
| |
Collapse
|
14
|
Wu M, Wang H, Kong D, Shao J, Song C, Yang T, Zhang Y. miR-452-3p inhibited osteoblast differentiation by targeting Smad4. PeerJ 2021; 9:e12228. [PMID: 34692253 PMCID: PMC8485836 DOI: 10.7717/peerj.12228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/08/2021] [Indexed: 12/28/2022] Open
Abstract
Osteoblast differentiation is a complex process that is essential for normal bone formation. A growing number of studies have shown that microRNAs (miRNAs) are key regulators in a variety of physiological and pathological processes, including osteogenesis. In this study, BMP2 was used to induce MC3T3-E1 cells to construct osteoblast differentiation cell model. Then, we investigated the effect of miR-452-3p on osteoblast differentiation and the related molecular mechanism by RT-PCR analysis, Western blot analysis, ALP activity, and Alizarin Red Staining. We found that miR-452-3p was significantly downregulated in osteoblast differentiation. Overexpression miR-452-3p (miR-452-3p mimic) significantly inhibited the expression of osteoblast marker genes RUNX2, osteopontin (OPN), and collagen type 1 a1 chain (Col1A1), and decreased the number of calcium nodules and ALP activity. In contrast, knockdown miR-452-3p (miR-452-3p inhibitor) produced the opposite effect. In terms of mechanism, we found that Smad4 may be the target of miR-452-3p, and knockdown Smad4 (si-Smad4) partially inhibited the osteoblast differentiation enhanced by miR-452-3p. Our results suggested that miR-452-3p plays an important role in osteoblast differentiation by targeting Smad4. Therefore, miR-452-3p is expected to be used in the treatment of bone formation and regeneration.
Collapse
Affiliation(s)
- Ming Wu
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, China
| | - Hongyan Wang
- Department of Orthopaedics, Gongli Hospital of Pudong New Area, Shanghai, China
| | - Dece Kong
- Department of Orthopaedics, Gongli Hospital of Pudong New Area, Shanghai, China
| | - Jin Shao
- Department of Orthopaedics, Gongli Hospital of Pudong New Area, Shanghai, China
| | - Chao Song
- Department of Orthopaedics, Gongli Hospital of Pudong New Area, Shanghai, China
| | - Tieyi Yang
- Department of Orthopaedics, Gongli Hospital of Pudong New Area, Shanghai, China
| | - Yan Zhang
- Department of Orthopaedics, Gongli Hospital of Pudong New Area, Shanghai, China
| |
Collapse
|
15
|
Self-Organization Provides Cell Fate Commitment in MSC Sheet Condensed Areas via ROCK-Dependent Mechanism. Biomedicines 2021; 9:biomedicines9091192. [PMID: 34572378 PMCID: PMC8470239 DOI: 10.3390/biomedicines9091192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Multipotent mesenchymal stem/stromal cells (MSC) are one of the crucial regulators of regeneration and tissue repair and possess an intrinsic program from self-organization mediated by condensation, migration and self-patterning. The ability to self-organize has been successfully exploited in tissue engineering approaches using cell sheets (CS) and their modifications. In this study, we used CS as a model of human MSC spontaneous self-organization to demonstrate its structural, transcriptomic impact and multipotent stromal cell commitment. We used CS formation to visualize MSC self-organization and evaluated the role of the Rho-GTPase pathway in spontaneous condensation, resulting in a significant anisotropy of the cell density within the construct. Differentiation assays were carried out using conventional protocols, and microdissection and RNA-sequencing were applied to establish putative targets behind the observed phenomena. The differentiation of MSC to bone and cartilage, but not to adipocytes in CS, occurred more effectively than in the monolayer. RNA-sequencing indicated transcriptional shifts involving the activation of the Rho-GTPase pathway and repression of SREBP, which was concordant with the lack of adipogenesis in CS. Eventually, we used an inhibitory analysis to validate our findings and suggested a model where the self-organization of MSC defined their commitment and cell fate via ROCK1/2 and SREBP as major effectors under the putative switching control of AMP kinase.
Collapse
|
16
|
Yuan L, You H, Qin N, Zuo W. Interleukin-10 Modulates the Metabolism and Osteogenesis of Human Dental Pulp Stem Cells. Cell Reprogram 2021; 23:270-276. [PMID: 34491831 DOI: 10.1089/cell.2021.0044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The osteogenic differentiation of mesenchymal stem cells (MSCs) is strongly related with the inflammatory microenvironment. The ability of osteogenic differentiation of MSCs is vital for the bone tissue engineering. Interleukin (IL)-10, a well-known anti-inflammatory factor, plays a key role in tissue repair. Dental pulp stem cells (DPSCs), with the advantage of convenience of extraction, are suitable for the bone tissue engineering. Therefore, it is meaning to explore the effects of IL-10 on the osteogenic differentiation of DPSCs. The proliferation activity of DPSCs were evaluated by MTS assay (CellTiter 96® Aqueous One Solution Cell Proliferation Assay [Promega]) and real-time polymerase chain reaction (RT-PCR). The osteogenic differentiation of DPSCs were determined by Alizarin Red staining, RT-PCR, and alkaline phosphatase activity test. The glucose metabolism was detected by Mito Stress test and glycolysis assay. IL-10 (10 or 20 nM) could enhance the osteogenic differentiation of DPSCs and promoted the metabolic switch from glycolysis to oxidative phosphorylation (OXPHOS), whereas IL-10 (5 and 50 nM) has no obvious effects on the osteogenic differentiation of DPSCs. The OXPHOS inhibitor restrained the promotion of osteogenic differentiation induced by IL-10. These findings show that IL-10 can promote the osteogenesis of DPSCs through the activation of OXPHOS, which provides a potential way for enhancing the osteogenic differentiation of DPSCs in bone tissue engineering.
Collapse
Affiliation(s)
- Li Yuan
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Hongxia You
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Nianhong Qin
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Wenxin Zuo
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
17
|
Chinese Poplar Propolis Inhibits MDA-MB-231 Cell Proliferation in an Inflammatory Microenvironment by Targeting Enzymes of the Glycolytic Pathway. J Immunol Res 2021; 2021:6641341. [PMID: 33628847 PMCID: PMC7899755 DOI: 10.1155/2021/6641341] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/24/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
Propolis is rich in flavonoids and has excellent antitumor activity. However, little is known about the potential effects of propolis on glycolysis in tumor cells. Here, the antitumor effects of propolis against human breast cancer MDA-MB-231 cells in an inflammatory microenvironment stimulated with lipopolysaccharide (LPS) were investigated by assessing the key enzymes of glycolysis. Propolis treatment obviously inhibited MDA-MB-231 cell proliferation, migration and invasion, clone forming, and angiogenesis. Proinflammatory mediators, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6, as well as NLRP3 inflammasomes, were decreased following propolis treatment when compared with the LPS group. Moreover, propolis treatment significantly downregulated the levels of key enzymes of glycolysis–hexokinase 2 (HK2), phosphofructokinase (PFK), pyruvate kinase muscle isozyme M2 (PKM2), and lactate dehydrogenase A (LDHA) in MDA-MB-231 cells stimulated with LPS. After treatment with 2-deoxy-D-glucose (2-DG), an inhibitor of glycolysis, the inhibitory effect of propolis on migration was not significant when compared with the LPS group. In addition, propolis increased reactive oxygen species (ROS) levels and decreased mitochondrial membrane potential. Taken together, these results indicated that propolis targeted key enzymes of glycolysis to suppress the proliferation of MDA-MB-231 cells in an inflammatory microenvironment. These studies provide a molecular basis for propolis as a natural anticancer agent against breast cancer.
Collapse
|