1
|
Wang J, Ma B, Jiang X, Li C, Lin Z, Wang Y, Shi J, Wang G, Cui C. H 2 protects H9c2 cells from hypoxia/reoxygenation injury by inhibiting the Wnt/CX3CR1 signaling pathway. Med Gas Res 2025; 15:339-347. [PMID: 39511756 PMCID: PMC11918467 DOI: 10.4103/mgr.medgasres-d-24-00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/06/2024] [Accepted: 08/26/2024] [Indexed: 11/15/2024] Open
Abstract
Myocardial ischemia‒reperfusion injury is a severe cardiovascular disease, and its treatment and prevention are crucial for improving patient prognosis and reducing the economic burden. This study aimed to explore the impact of hydrogen (H 2 ) on hypoxia/reoxygenation (H/R) injury in H9c2 cells (derived from rat embryonic heart tissue) induced by hydrogen peroxide (H 2 O 2 ) and to elucidate its underlying mechanism. An H/R injury model was established in H9c2 cells via exposure to 15 μM H 2 O 2 for 3 hours, followed by incubation in a 5% CO 2 atmosphere at 37°C for 24 hours. Then, the cells were treated with H 2 (50%) for 6, 12 or 24 hours. The results demonstrated that H9c2 cells exposed to H 2 O 2 and subjected to H/R injury presented a marked decrease in the cell survival rate, accompanied by severe morphological alterations, such as curling and wrinkling, and elevated lactate dehydrogenase levels. Notably, H 2 mitigated H/R injury induced by H 2 O 2 in a time-dependent manner, improving the morphological damage observed in H9c2 cells and decreasing lactate dehydrogenase levels. Compared with the model group, treatment with H 2 increased the activities of antioxidant enzymes, including catalase, superoxide dismutase, and glutathione peroxidase, while concurrently reducing the level of malondialdehyde, an indicator of cellular damage. Furthermore, H 2 treatment downregulated the expression of inflammatory cytokines and inflammatory-related factors, specifically interleukin-6, high-mobility group box 1, tumor necrosis factor-alpha, and Toll-like receptor 4, in H9c2 cells post-H/R injury. Furthermore, H 2 treatment resulted in a marked decrease in the expression levels of proteins associated with the Wnt/C-X3-C-motif receptor 1 signaling pathway, such as β-catenin, glycogen synthase kinase-3 beta, adenomatous polyposis coli, and Wnt and C-X3-C-motif receptor 1. This observation suggests a potential mechanism for its protective effects against H/R injury. Therefore, H 2 exerts a protective effect against H/R injury in H9c2 cells induced by H 2 O 2 , potentially by inhibiting the activated Wnt/C-X3-C-motif receptor 1 signaling pathway. This inhibition, in turn, prevents the generation of oxidative stress, inflammatory cytokines, and inflammation-associated factors.
Collapse
Affiliation(s)
- Jingsheng Wang
- Department of Pharmacy, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong Province, China
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Bin Ma
- Department of Cardiovascular Medicine, Taian City Taishan District People’s Hospital, Taian, Shandong Province, China
| | - Xue Jiang
- Hydrogen Medical Research Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, China
| | - Chao Li
- Hydrogen Medical Research Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, China
| | - Zhaochen Lin
- Hydrogen Medical Research Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, China
| | - Yumei Wang
- Hydrogen Medical Research Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, China
| | - Jingfei Shi
- Shandong First Medical University, Jinan, Shandong Province, China
| | - Gang Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Chao Cui
- Department of Pharmacy, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong Province, China
- Hydrogen Medical Research Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, China
| |
Collapse
|
2
|
Kong M, Zhai Y, Liu H, Zhang S, Chen S, Li W, Ma X, Ji Y. Insights into the mechanisms of angiogenesis in hepatoblastoma. Front Cell Dev Biol 2025; 13:1535339. [PMID: 40438141 PMCID: PMC12116456 DOI: 10.3389/fcell.2025.1535339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 05/02/2025] [Indexed: 06/01/2025] Open
Abstract
Hepatoblastoma (HB), the most common pediatric liver malignancy, is characterized by aggressive growth and metastasis driven by complex angiogenic mechanisms. This review elucidates the pivotal role of angiogenesis in HB progression, emphasizing metabolic reprogramming, tumor microenvironment (TME) dynamics, and oncogenic signalling pathways. The Warburg effect in HB cells fosters a hypoxic microenvironment, stabilizing hypoxia-inducible factor-1α (HIF-1α) and upregulating vascular endothelial growth factor (VEGF), which synergistically enhances angiogenesis. Key pathways such as the Wnt/β-catenin, VEGF, PI3K/AKT, and JAK2/STAT3 pathways are central to endothelial cell proliferation, migration, and vascular maturation, whereas interactions with tumor-associated macrophages (TAMs) and pericytes further remodel the TME to support neovascularization. Long noncoding RNAs and glycolytic enzymes have emerged as critical regulators of angiogenesis, linking metabolic activity with vascular expansion. Anti-angiogenic therapies, including VEGF inhibitors and metabolic pathway-targeting agents, show preclinical promise but face challenges such as resistance and off-target effects. Future directions advocate for dual-target strategies, spatial multiomics technologies to map metabolic-angiogenic crosstalk, and personalized approaches leveraging biomarkers for risk stratification. This synthesis underscores the need for interdisciplinary collaboration to translate mechanistic insights into durable therapies, ultimately improving outcomes for HB patients.
Collapse
Affiliation(s)
- Meng Kong
- Department of Pediatric Surgery, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Pediatric Surgery, Jinan Children’s Hospital, Jinan, China
| | - Yunpeng Zhai
- Department of Pediatric Surgery, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Pediatric Surgery, Jinan Children’s Hospital, Jinan, China
| | - Hongzhen Liu
- Department of Pediatric Surgery, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Pediatric Surgery, Jinan Children’s Hospital, Jinan, China
| | - Shisong Zhang
- Department of Pediatric Surgery, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Pediatric Surgery, Jinan Children’s Hospital, Jinan, China
| | - Shuai Chen
- Department of Pediatric Surgery, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Pediatric Surgery, Jinan Children’s Hospital, Jinan, China
| | - Wenfei Li
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiang Ma
- Department of Respiratory Disease, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Jinan Key Laboratory of Pediatric Respiratory Diseases, Jinan Children’s Hospital, Jinan, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Chen E, Wang L, Wang Q, Cai Y, Dou Y, Qu H, Zhu J, Zhao H, Zheng S, Zhao C, Chen B. Triptolide alleviates psoriasis through inhibiting the Wnt5a/β-Catenin signaling pathway. Front Pharmacol 2025; 16:1534118. [PMID: 40365308 PMCID: PMC12069328 DOI: 10.3389/fphar.2025.1534118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Background Psoriasis, an immune-mediated chronic inflammatory skin disease, is characterized by keratinocyte proliferation and inflammatory cell infiltration. T ripterygium wilfordii is a potential treatment option for psoriasis, and triptolide (TP) is one of its active components. TP may possess the potential to treat psoriasis; however, its mechanism of action remains unknown. Objective The research aims to explore the therapeutic effect of TP on psoriasis and elucidate its potential targets. Methods The imiquimod-induced psoriasis-like lesion mouse model was used to identify the mechanism underlying the therapeutic effect of TP.RNA-seq strategy was utilized to forecast the targets and mechanisms of TP in the context of psoriasis.Finally, we verify the effect of TP in the IL-17A-induced keratinocyte hyperproliferation and inflammation model. Results TP reduced epidermal hyperplasia as well as psoriasis area and severity index scoring. Moreover, treatment with TP inhibited IMQ-induced splenomegaly and T-helper 17 cell differentiation in the psoriatic mice. Additionally, the treatment reduced the serum levels of pro-inflammatory cytokines such as interleukin (IL)-17A, IL-22, IL-23, IL-6, and tumor necrosis factor-α in the mice. The sequencing of RNA obtained from skin lesions of the psoriatic mice indicated that treatment with TP significantly downregulated Wnt5a RNA levels. Moreover, the Wnt5a/β-catenin pathway upregulated by IMQ was downregulated by treatment with TP. Additionally, IL-17A induced and upregulated Wnt5A and β-catenin mRNA expression, and TP inhibited this upregulated expression in HaCaT cells. Furthermore, TP inhibited proliferation, promoted apoptosis, and arrested the cell cycle in the IL-17A-induced keratinocyte hyperproliferation and inflammation model, thereby exhibiting its anti-inflammatory properties. Conclusion TP alleviated psoriasis in mice by exerting anti-inflammatory effects and inhibited keratinocyte proliferation, which was partly achieved by regulating the Wnt5a/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Eryang Chen
- The Affiliated Cangnan Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Wang
- The Affiliated Cangnan Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qu Wang
- The Affiliated Cangnan Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yaning Dou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongyan Qu
- The Affiliated Cangnan Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junyi Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haiyang Zhao
- The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Suqing Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chengguang Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bin Chen
- The Affiliated Cangnan Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Zhong XS, Lopez KM, Krishnachaitanya SS, Liu M, Xiao Y, Ou R, Nagy HI, Kochkarian T, Powell DW, Fujise K, Li Q. Fecal microbiota transplantation mitigates cardiac remodeling and functional impairment in mice with chronic colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643179. [PMID: 40161578 PMCID: PMC11952542 DOI: 10.1101/2025.03.13.643179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Background Inflammatory bowel disease (IBD) is a chronic inflammatory disorder with significant extraintestinal manifestations, including cardiovascular derangements. However, the molecular mechanisms underlying the cardiac remodeling and dysfunction remain unclear. Methods We investigated the effects of chronic colitis on the heart using two mouse models: DSS-induced colitis and Il10 -/- spontaneous colitis. Echocardiography was employed to assess heart function and molecular characterization was performed using bulk RNA-sequencing, RT-qPCR, and western blot. Results Both models exhibited significant cardiac impairment, including reduced ejection fraction and fractional shortening as well as increased collagen deposition, inflammation, and myofibril reorganization. Molecular analyses revealed upregulation of fibrosis markers (i.e. COL1A1, COL3A1, Fibronectin) and β-catenin reactivation, indicating a pro-fibrotic cardiac environment. Each model yielded common upregulation of eicosanoid-associated and inflammatory genes ( Cyp2e1 , Map3k6 , Pck1 , Cfd ), and model-specific alterations in pathways regulating cAMP- and cGMP-signaling, arachidonic and linoleic acid metabolism, Cushing syndrome-related genes, and immune cell responses. DSS colitis caused differential regulation of 232 cardiac genes, while Il10 -/- colitis yielded 105 dysregulated genes, revealing distinct molecular pathways driving cardiac dysfunction. Importantly, therapeutic fecal microbiota transplantation (FMT) restored heart function in both models, characterized by reduced fibrosis markers and downregulated pro-inflammatory genes ( Lbp and Cdkn1a in Il10 -/- mice and Fos in DSS mice), while also mitigating intestinal inflammation. Post-FMT cardiac RNA-sequencing revealed significant gene expression changes, with three altered genes in DSS mice and 67 genes in Il10 -/- mice. Notably, Il10 -/- mice showed relatively less cardiac recovery following FMT, highlighting IL-10's cardioprotective and anti-inflammatory contribution. Conclusions Our findings elucidate novel insights into colitis-induced cardiac remodeling and dysfunction and suggest that FMT mitigates cardiac dysfunction by attenuating systemic inflammation and correcting gut dysbiosis. This study underscores the need for further evaluation of gut-heart interactions and microbiome-based therapies to improve cardiovascular health in IBD patients.
Collapse
|
5
|
Yang J. Emerging Insights into Sall4's Role in Cardiac Regenerative Medicine. Cells 2025; 14:154. [PMID: 39936946 PMCID: PMC11817359 DOI: 10.3390/cells14030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Sall4 as a pivotal transcription factor has been extensively studied across diverse biological processes, including stem cell biology, embryonic development, hematopoiesis, tissue stem/progenitor maintenance, and the progression of various cancers. Recent research highlights Sall4's emerging roles in modulating cardiac progenitors and cellular reprogramming, linking its functions to early heart development and regenerative medicine. These findings provide new insights into the critical functions of Sall4 in cardiobiology. This review explores Sall4's complex molecular mechanisms and their implications for advancing cardiac regenerative medicine.
Collapse
Affiliation(s)
- Jianchang Yang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|