1
|
Wang Y, Zhang Y, Cui Y, Sun Z, Zhou Z, Hu S, Li S, Liu M, Meng X, Xiao Y, Shi D, Bi D, Li Z. Identification of an Integrase That Responsible for Precise Integration and Excision of Riemerella anatipestifer Genomic Island. Front Microbiol 2019; 10:2099. [PMID: 31616389 PMCID: PMC6764341 DOI: 10.3389/fmicb.2019.02099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
Riemerella anatipestifer is a Gram-negative, pathogenic bacterium, which is harmful to poultry. However, the genomic islands (GIs) in R. anatipestifer are not well-studied. In this study, a 10K genomic island was predicted by the bioinformatics analysis of R. anatipestifer ATCC 11845, which is widely found in other R. anatipestifer genomes. We had first reported the genomic island integration and excision function in R. anatipestifer. We successfully constructed the integration plasmid by using the integrase and 53 bp attP elements. The 10K GI was found integrated at the 53 bp attB located in the Arg-tRNA of the R. anatipestifer RA-YM chromosome. We identified an integrase that helped in the precise integration and excision in R. anatipestifer and elucidated the molecular mechanism of the 10K genomic island integration and excision. Furthermore, we provided a new method for the gene expression and construction of complementary strain.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yijie Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhijian Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zutao Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Sishun Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Shaowen Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Mei Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Xianrong Meng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Yuncai Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Deshi Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Dingren Bi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Zili Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| |
Collapse
|
2
|
Modified lentiviral LTRs allow Flp recombinase-mediated cassette exchange and in vivo tracing of "factor-free" induced pluripotent stem cells. Mol Ther 2014; 22:919-28. [PMID: 24434935 DOI: 10.1038/mt.2014.4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/06/2014] [Indexed: 12/16/2022] Open
Abstract
Methods for generating induced pluripotent stem cells (iPSCs) for disease modeling and cell therapies have progressed from integrating vectors to transient delivery of reprogramming factors, avoiding permanent genomic modification. A major limitation of unmodified iPSCs is the assessment of their distribution and contribution to adverse reactions in autologous cell therapy. Here, we report that polycistronic lentiviral vectors with single Flp recombinase (Flp) recognition target (FRT) sites can be used to generate murine iPSCs that are devoid of the reprogramming cassette but carry an intergenic 300-bp long terminal repeat sequence. Performing quantitative polymerase chain reaction on this marker, we could determine genetic identity and tissue contribution of iPSC-derived teratomas in mice. Moreover, we generated iPSCs carrying heterospecific FRT twin sites, enabling excision and recombinase-mediated cassette exchange (RMCE) of the reprogramming cassette for another expression unit of choice. Following screening of iPSCs for "safe harbor" integration sites, expression cassettes were introduced by RMCE into various previously silenced loci of selected single-copy iPSCs. Analysis of DNA methylation showed that RMCE reverted the local epigenetic signature, which allowed transgene expression in undifferentiated iPSCs and in differentiated progeny. These findings support the concept of creating clonotypically defined exchangeable and traceable pluripotent stem cells for disease research and cell therapy.
Collapse
|
3
|
Petrov A, Allinne J, Pirozhkova I, Laoudj D, Lipinski M, Vassetzky YS. A nuclear matrix attachment site in the 4q35 locus has an enhancer-blocking activity in vivo: implications for the facio-scapulo-humeral dystrophy. Genes Dev 2008; 18:39-45. [PMID: 18032730 PMCID: PMC2134777 DOI: 10.1101/gr.6620908] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 10/16/2007] [Indexed: 12/30/2022]
Abstract
Facio-scapulo-humeral dystrophy (FSHD), a muscular hereditary disease with a prevalence of 1 in 20,000, is caused by a partial deletion of a subtelomeric repeat array on chromosome 4q. Earlier, we demonstrated the existence in the vicinity of the D4Z4 repeat of a nuclear matrix attachment site, FR-MAR, efficient in normal human myoblasts and nonmuscular human cells but much weaker in muscle cells from FSHD patients. We now report that the D4Z4 repeat contains an exceptionally strong transcriptional enhancer at its 5'-end. This enhancer up-regulates transcription from the promoter of the neighboring FRG1 gene. However, an enhancer blocking activity was found present in FR-MAR that in vitro could protect transcription from the enhancer activity of the D4Z4 array. In vivo, transcription from the FRG1 and FRG2 genes could be down- or up-regulated depending on whether or not FR-MAR is associated with the nuclear matrix. We propose a model for an etiological role of the delocalization of FR-MAR in the genesis of FSHD.
Collapse
Affiliation(s)
- Andrei Petrov
- UMR 8126, Centre National de la Recherche Scientifique–Université Paris-Sud 11, Institut de Cancérologie Gustave-Roussy, F-94804 Villejuif, France
| | - Jeanne Allinne
- UMR 8126, Centre National de la Recherche Scientifique–Université Paris-Sud 11, Institut de Cancérologie Gustave-Roussy, F-94804 Villejuif, France
| | - Iryna Pirozhkova
- UMR 8126, Centre National de la Recherche Scientifique–Université Paris-Sud 11, Institut de Cancérologie Gustave-Roussy, F-94804 Villejuif, France
| | - Dalila Laoudj
- Institut National de la Santé et de la Recherche Médical ER125, F-34295 Montpellier, France
| | - Marc Lipinski
- UMR 8126, Centre National de la Recherche Scientifique–Université Paris-Sud 11, Institut de Cancérologie Gustave-Roussy, F-94804 Villejuif, France
| | - Yegor S. Vassetzky
- UMR 8126, Centre National de la Recherche Scientifique–Université Paris-Sud 11, Institut de Cancérologie Gustave-Roussy, F-94804 Villejuif, France
| |
Collapse
|
5
|
Koch KS, Aoki T, Wang Y, Atkinson AE, Gleiberman AS, Glebov OK, Leffert HL. Site-specific integration of targeted DNA into animal cell genomes. Gene 2000; 249:135-44. [PMID: 10831847 DOI: 10.1016/s0378-1119(00)00153-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Novel genetically engineered retroviral vectors and targeting plasmids are described that enable the site-specific targeting of exogenous DNA into the genomes of cultured animal cells. The protocol involves the transduction of competent cells by a chimeric retroviral vector containing a transcription unit composed of two linked cassettes: an upstream marker gene under the control of the viral 5' LTR; and a downstream reporter trap containing a strong promoter 5' to a 48bp yeast FRT element. When cells containing such integrated units are co-transfected with a plasmid encoding yeast FLP recombinase and a promoterless targeting plasmid containing a reporter cDNA tract 3' to an homologous FRT element, the targeting plasmid recombines at the chromosomally preconfigured FRT site, and a new hemizygous function is introduced into the downstream cassette. These reagents provide a new portable system for site-specific targeting of chemically modified genes into uniform and unique sites in genomically integrated transcription units.
Collapse
Affiliation(s)
- K S Koch
- Department of Pharmacology, School of Medicine, University of California, San Diego 92093-0636, USA
| | | | | | | | | | | | | |
Collapse
|