1
|
Cho G, Kim DR, Kwak YS. Ecological shifts in soil microbiota and root rot disease progress during ginseng monoculture. Front Microbiol 2024; 15:1442208. [PMID: 39493853 PMCID: PMC11530993 DOI: 10.3389/fmicb.2024.1442208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction The phenomenon in which the damage of plant diseases is suppressed by continuous cropping is defined as "suppressiveness" and the development of suppressive soils and key beneficial microorganisms have been identified through various previous studies. However, no studies have been conducted on microbial communities related to disease occurrence before the initial occurrence of diseases in crop monoculture. Methods We aimed to investigate the ecological modifications of pathogen population density in soil, disease occurrence rate, and microbiota community shifting during ginseng monoculture to better understand the tripartite social relationships in the monoculture system. To achieve the study's objectives, a long-term monoculture of ginseng was established. The microbial diversity and community structure were analyzed using high-throughput sequencing, and the pathogen population density and disease occurrence rate were determined using qPCR and observation. Results and discussion The results showed that the initial rhizosphere bacterial community of ginseng had already collapsed before the development of the root rot disease. The study also identified the crucial role of soil-borne pathogens in causing disease and the loss of initial keystone taxa populations in the early stages of monoculture. Our study revealed a novel aspect of soil microbiota dynamics during ginseng monoculture, with seven distinct microbes (Beijerinckiaceae, Comamonadaceae, Devosiaceae, Rhizobiaceae, Sphingobacteriaceae, Sphingomonadaceae, and Xanthomonadaceae) participating in soil nitrogen metabolism as an 'initial community' that regulates root rot disease through nutritional competition. The findings contribute to ecological research on disease-suppressiveness soil, disease management, and sustainable agriculture.
Collapse
Affiliation(s)
- Gyeongjun Cho
- Division of Agricultural Microbiology, National Institute of Agriculture Science, Rural Development Administration, Wanju, Republic of Korea
| | - Da-Ran Kim
- Division of Applied Life Science, RILS, Gyeongsang National University, Jinju, Republic of Korea
| | - Youn-Sig Kwak
- Division of Applied Life Science, RILS, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
2
|
Tong A, Liu W, Wang H, Liu X, Xia G, Zhu J. Transcriptome analysis provides insights into the cell wall and aluminum toxicity related to rusty root syndrome of Panax ginseng. FRONTIERS IN PLANT SCIENCE 2023; 14:1142211. [PMID: 37384362 PMCID: PMC10293891 DOI: 10.3389/fpls.2023.1142211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/02/2023] [Indexed: 06/30/2023]
Abstract
Rusty root syndrome is a common and serious disease in the process of Panax ginseng cultivation. This disease greatly decreases the production and quality of P. ginseng and causes a severe threat to the healthy development of the ginseng industry. However, its pathogenic mechanism remains unclear. In this study, Illumina high-throughput sequencing (RNA-seq) technology was used for comparative transcriptome analysis of healthy and rusty root-affected ginseng. The roots of rusty ginseng showed 672 upregulated genes and 526 downregulated genes compared with the healthy ginseng roots. There were significant differences in the expression of genes involved in the biosynthesis of secondary metabolites, plant hormone signal transduction, and plant-pathogen interaction. Further analysis showed that the cell wall synthesis and modification of ginseng has a strong response to rusty root syndrome. Furthermore, the rusty ginseng increased aluminum tolerance by inhibiting Al entering cells through external chelating Al and cell wall-binding Al. The present study establishes a molecular model of the ginseng response to rusty roots. Our findings provide new insights into the occurrence of rusty root syndrome, which will reveal the underlying molecular mechanisms of ginseng response to this disease.
Collapse
Affiliation(s)
- Aizi Tong
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, China
| | - Wei Liu
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, China
| | - Haijiao Wang
- College of Life Science, Changchun Normal University, Changchun, China
| | - Xiaoliang Liu
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, China
| | - Guangqing Xia
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, China
| | - Junyi Zhu
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, China
| |
Collapse
|
3
|
Yan Z, Zhong L, Zhu W, Chung SK, Hou P. Chinese herbal medicine for the treatment of cardiovascular diseases ─ targeting cardiac ion channels. Pharmacol Res 2023; 192:106765. [PMID: 37075871 DOI: 10.1016/j.phrs.2023.106765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality, imposing an increasing global health burden. Cardiac ion channels (voltage-gated NaV, CaV, KVs, and others) synergistically shape the cardiac action potential (AP) and control the heartbeat. Dysfunction of these channels, due to genetic mutations, transcriptional or post-translational modifications, may disturb the AP and lead to arrhythmia, a major risk for CVD patients. Although there are five classes of anti-arrhythmic drugs available, they can have varying levels of efficacies and side effects on patients, possibly due to the complex pathogenesis of arrhythmias. As an alternative treatment option, Chinese herbal remedies have shown promise in regulating cardiac ion channels and providing anti-arrhythmic effects. In this review, we first discuss the role of cardiac ion channels in maintaining normal heart function and the pathogenesis of CVD, then summarize the classification of Chinese herbal compounds, and elaborate detailed mechanisms of their efficacy in regulating cardiac ion channels and in alleviating arrhythmia and CVD. We also address current limitations and opportunities for developing new anti-CVD drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ling Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Wandi Zhu
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Faculty of Medicine & Faculty of Innovation Engineering at Macau University of Science and Technology, Taipa, Macao SAR, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China.
| |
Collapse
|
4
|
Ginsenoside Re inhibits myocardial fibrosis by regulating miR-489/myd88/NF-κB pathway. J Ginseng Res 2023; 47:218-227. [PMID: 36926602 PMCID: PMC10014187 DOI: 10.1016/j.jgr.2021.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
Background Myocardial fibrosis (MF) is an advanced pathological manifestation of many cardiovascular diseases, which can induce heart failure and malignant arrhythmias. However, the current treatment of MF lacks specific drugs. Ginsenoside Re has anti-MF effect in rat, but its mechanism is still not clear. Therefore, we investigated the anti-MF effect of ginsenoside Re by constructing mouse acute myocardial infarction (AMI) model and AngⅡ induced cardiac fibroblasts (CFs) model. Methods The anti-MF effect of miR-489 was investigated by transfection of miR-489 mimic and inhibitor in CFs. Effect of ginsenoside Re on MF and its related mechanisms were investigated by ultrasonographic, ELISA, histopathologic staining, transwell test, immunofluorescence, Western blot and qPCR in the mouse model of AMI and the AngⅡ-induced CFs model. Results MiR-489 decreased the expression of α-SMA, collagenⅠ, collagen Ⅲ and myd88, and inhibited the phosphorylation of NF-κB p65 in normal CFs and CFs treated with AngⅡ. Ginsenoside Re could improve cardiac function, inhibit collagen deposition and CFs migration, promote the transcription of miR-489, and reduce the expression of myd88 and the phosphorylation of NF-κB p65. Conclusion MiR-489 can effectively inhibit the pathological process of MF, and the mechanism is at least partly related to the regulation of myd88/NF-κB pathway. Ginsenoside Re can ameliorate AMI and AngⅡ induced MF, and the mechanism is at least partially related to the regulation of miR-489/myd88/NF-κB signaling pathway. Therefore, miR-489 may be a potential target of anti-MF and ginsenoside Re may be an effective drug for the treatment of MF.
Collapse
|
5
|
Ahn JC, Mathiyalagan R, Nahar J, Ramadhania ZM, Kong BM, Lee DW, Choi SK, Lee CS, Boopathi V, Yang DU, Kim BY, Park H, Yang DC, Kang SC. Transcriptome expression profile of compound-K-enriched red ginseng extract (DDK-401) in Korean volunteers and its apoptotic properties. Front Pharmacol 2022; 13:999192. [PMID: 36532751 PMCID: PMC9751427 DOI: 10.3389/fphar.2022.999192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2023] Open
Abstract
Ginseng and ginsenosides have been reported to have various pharmacological effects, but their efficacies depend on intestinal absorption. Compound K (CK) is gaining prominence for its biological and pharmaceutical properties. In this study, CK-enriched fermented red ginseng extract (DDK-401) was prepared by enzymatic reactions. To examine its pharmacokinetics, a randomized, single-dose, two-sequence, crossover study was performed with eleven healthy Korean male and female volunteers. The volunteers were assigned to take a single oral dose of one of two extracts, DDK-401 or common red ginseng extract (DDK-204), during the initial period. After a 7-day washout, they received the other extract. The pharmacokinetics of DDK-401 showed that its maximum plasma concentration (Cmax) occurred at 184.8 ± 39.64 ng/mL, Tmax was at 2.4 h, and AUC0-12h was 920.3 ± 194.70 ng h/mL, which were all better than those of DDK-204. The maximum CK absorption in the female volunteers was higher than that in the male volunteers. The differentially expressed genes from the male and female groups were subjected to a KEGG pathway analysis, which showed results in the cell death pathway, such as apoptosis and necroptosis. In cytotoxicity tests, DDK-401 and DDK-204 were not particularly toxic to normal (HaCaT) cells, but at a concentration of 250 μg/mL, DDK-401 had a much higher toxicity to human lung cancer (A549) cells than DDK-204. DDK-401 also showed a stronger antioxidant capacity than DDK-204 in both the DPPH and potassium ferricyanide reducing power assays. DDK-401 reduced the reactive oxygen species production in HaCaT cells with induced oxidative stress and led to apoptosis in the A549 cells. In the mRNA sequence analysis, a signaling pathway with selected marker genes was assessed by RT-PCR. In the HaCaT cells, DDK-401 and DDK-204 did not regulate FOXO3, TLR4, MMP-9, or p38 expression; however, in the A549 cells, DDK-401 downregulated the expressions of MMP9 and TLR4 as well as upregulated the expressions of the p38 and caspase-8 genes compared to DDK-204. These results suggest that DDK-401 could act as a molecular switch for these two cellular processes in response to cell damage signaling and that it could be a potential candidate for further evaluations in health promotion studies.
Collapse
Affiliation(s)
- Jong Chan Ahn
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, South Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, South Korea
| | - Jinnatun Nahar
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, South Korea
| | - Zelika Mega Ramadhania
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, South Korea
| | - Byoung Man Kong
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, South Korea
| | | | - Sung Keun Choi
- Daedong Korea Ginseng Co., Ltd., Geumsan-gun, South Korea
| | - Chang Soon Lee
- Daedong Korea Ginseng Co., Ltd., Geumsan-gun, South Korea
| | - Vinothini Boopathi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, South Korea
| | | | - Bo Yeon Kim
- Exercise Nutrition & Biochemistry Lab, Kyung Hee University, Yongin-si, South Korea
| | - Hyon Park
- Exercise Nutrition & Biochemistry Lab, Kyung Hee University, Yongin-si, South Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, South Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, South Korea
| | - Se Chan Kang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, South Korea
| |
Collapse
|
6
|
Comprehensive chemical profiling and quantification of Shexiang Xintongning Tablets by integrating liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
7
|
Dong Q, An Y, Du G, Wang J, Liu J, Su J, Xie H, Liang C, Liu J. Identification of ginsenoside metabolites in plasma related to different bioactivities of Panax notoginseng and Panax Ginseng. Biomed Chromatogr 2022; 36:e5334. [PMID: 35045586 DOI: 10.1002/bmc.5334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022]
Abstract
Although the chemical components of Panax notoginseng (PN) and Panax ginseng (PG) are similar, the bioactivities of them are different. In this study, the differential bioactivities of PN and PG were used as the research object. First, the different metabolites in the plasma after oral administration of PN and PG were analyzed by a UPLC-Q/TOF-MS-based metabolomics approach. Afterward, the metabolite-target- pathway network of PN and PG was constructed, thus the pathways related to different bioactivities were analyzed. As the results, 7 different metabolites were identified in PN group, and 10 different metabolites were identified in the PG group. In the PN group, the metabolite of N1 was related to hemostasis, N1 and N3 were related to inhibiting the nerve center, antihypertensive, and abirritation. The metabolites of N1, N3, N4, N5, and N6 were related to protecting the liver. The results showed that the metabolites of G1, G2, G3, G5, and G6 in PG group were related to anti-heart failure, and G1, G2, G6, and G9 were related to raising blood pressure. There were 13 signaling pathways related to different biological activities of PN (eight pathways) and PG (five pathways). These pathways further clarified the mechanism of action that caused the different bioactivities between PN and PG. In summary, metabolomics combined with network pharmacology could be helpful to clarify the material basis of different bioactivities between PN and PG, promoting the research on PN and PG.
Collapse
Affiliation(s)
- Qinghai Dong
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| | - Yang An
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| | - Guangguang Du
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| | - Jia Wang
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| | - Jiayin Liu
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| | - Jun Su
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| | | | - Chongyang Liang
- Institute of Frontier Medical Science, Jilin University, Changchun, P. R. China
| | - Jihua Liu
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| |
Collapse
|
8
|
Zou X, Zhang Y, Zeng X, Liu T, Li G, Dai Y, Xie Y, Luo Z. Molecular Cloning and Identification of NADPH Cytochrome P450 Reductase from Panax ginseng. Molecules 2021; 26:molecules26216654. [PMID: 34771064 PMCID: PMC8588036 DOI: 10.3390/molecules26216654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Ginseng (Panax ginseng C.A. Mey.) is a precious Chinese traditional medicine, for which ginsenosides are the most important medicinal ingredients. Cytochrome P450 enzymes (CYP450) and their primary redox molecular companion NADPH cytochrome P450 reductase (CPR) play a key role in ginsenoside biosynthesis pathway. However, systematic studies of CPR genes in ginseng have not been reported. Numerous studies on ginsenoside synthesis biology still use Arabidopsis CPR (AtCPR1) as a reductase. In this study, we isolated two CPR genes (PgCPR1, PgCPR2) from ginseng adventitious roots. Phylogenetic tree analysis showed that both PgCPR1 and PgCPR2 are grouped in classⅡ of dicotyledonous CPR. Enzyme experiments showed that recombinant proteins PgCPR1, PgCPR2 and AtCPR1 can reduce cytochrome c and ferricyanide with NADPH as the electron donor, and PgCPR1 had the highest enzymatic activities. Quantitative real-time PCR analysis showed that PgCPR1 and PgCPR2 transcripts were detected in all examined tissues of Panax ginseng and both showed higher expression in stem and main root. Expression levels of the PgCPR1 and PgCPR2s were both induced after a methyl jasmonate (MeJA) treatment and its pattern matched with ginsenoside accumulation. The present investigation suggested PgCPR1 and PgCPR2 are associated with the biosynthesis of ginsenoside. This report will assist in future CPR family studies and ultimately improving ginsenoside production through transgenic engineering and synthetic biology.
Collapse
|
9
|
Towards authentication of Korean ginseng-containing foods: Differentiation of five Panax species by a novel diagnostic tool. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Effects of Panax ginseng on hyperglycemia, hypertension, and hyperlipidemia: A systematic review and meta-analysis. J Ginseng Res 2021; 46:188-205. [PMID: 35509826 PMCID: PMC9058846 DOI: 10.1016/j.jgr.2021.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022] Open
|
11
|
Teseo S, Houot B, Yang K, Monnier V, Liu G, Tricoire H. G. sinense and P. notoginseng Extracts Improve Healthspan of Aging Flies and Provide Protection in A Huntington Disease Model. Aging Dis 2021; 12:425-440. [PMID: 33815875 PMCID: PMC7990376 DOI: 10.14336/ad.2020.0714-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/14/2020] [Indexed: 12/30/2022] Open
Abstract
In the last decades, the strong increase in the proportion of older people worldwide, and the increased prevalence of age associated degenerative diseases, have put a stronger focus on aging biology. In spite of important progresses in our understanding of the aging process, an integrative view is still lacking and there is still need for efficient anti-aging interventions that could improve healthspan, reduce incidence of age-related disease and, eventually, increase the lifespan. Interestingly, some compounds from traditional medicine have been found to possess anti-oxidative and anti-inflammatory properties, suggesting that they could play a role as anti-aging compounds, although in depth in vivo investigations are still scarce. In this study we used one the major aging model organisms, Drosophila melanogaster, to investigate the ability of four herb extracts (HEs: Dendrobium candidum, Ophiopogon japonicum, Ganoderma sinense and Panax notoginseng) widely used in traditional Chinese medicine (TCM) to slow down aging and improve healthspan of aged animals. Combining multiple approaches (stress resistance assays, lifespan and metabolic measurements, functional heart characterizations and behavioral assays), we show that these four HEs provide in vivo protection from various insults, albeit with significant compound-specific differences. Importantly, extracts of P. notoginseng and G. sinense increase the healthspan of aging animals, as shown by increased activity during aging and improved heart function. In addition, these two compounds also provide protection in a Drosophila model of Huntington’s disease (HD), suggesting that, besides their anti-aging properties in normal individuals, they could be also efficient in the protection against age-related diseases.
Collapse
Affiliation(s)
- Serafino Teseo
- 1Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France.,2School of Biological Sciences, Nanyang Technological University, Singapore
| | - Benjamin Houot
- 1Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | | | | | | | - Hervé Tricoire
- 1Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| |
Collapse
|
12
|
Abstract
Ginseng is one of the oldest documented herbs still in use today. It is known as a panacea for many disease states and for the enhancement of wellness affecting most body systems. Very few side effects are experienced, but there are considerations with its use. Three major types of ginseng are described. Asian ginseng is more potent than American ginseng; however, most supplements come from American and Asian types of ginseng. Purchases should be made from reputable sources owing to the lack of standardization of the production of herbal supplements.
Collapse
Affiliation(s)
- Amanda J Flagg
- Middle Tennessee State University (MTSU) School of Nursing, MTSU Box 81, Murfreesboro, TN 37132, USA.
| |
Collapse
|
13
|
Zhou YS, Zeng RX, Zhang MZ, Guo LH. Treatment of An Acute Severe Cadmium Poisoning Patient Combined with Multiple Organ Dysfunction Syndromes by Integrated Chinese and Western Medicines: A Case Report. Chin J Integr Med 2020; 26:853-856. [PMID: 32318907 PMCID: PMC7222946 DOI: 10.1007/s11655-020-3089-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Yuan-Shen Zhou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Rui-Xiang Zeng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Min-Zhou Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Li-Heng Guo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China. .,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
14
|
Microbial Community Changes in the Rhizosphere Soil of Healthy and Rusty Panax ginseng and Discovery of Pivotal Fungal Genera Associated with Rusty Roots. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8018525. [PMID: 32016120 PMCID: PMC6985933 DOI: 10.1155/2020/8018525] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/18/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022]
Abstract
Panax ginseng Meyer, a valuable medicinal plant, is severely threatened by rusty root, a condition that greatly affects its yield and quality. Studies investigating the relationship between soil microbial community composition and rusty roots are vital for the production of high-quality ginseng. Here, high-throughput sequencing was employed to systematically characterize changes in the soil microbial community associated with rusty roots. Fungal diversity was lower in the soils of rusty root-affected P. ginseng than in those of healthy plants. Importantly, principal coordinate analysis separated the fungal communities in the rhizosphere soils of rusty root-affected ginseng from those of healthy plants. The dominant bacterial and fungal genera differed significantly between rhizosphere soils of healthy and rusty root-affected P. ginseng, and linear discriminant analysis effect size (LEfSe) further indicated a strong imbalance in the soil microbial community of diseased plants. Significantly enriched bacterial genera (including Rhodomicrobium, Knoellia, Nakamurella, Asticcacaulis, and Actinomadura) were mainly detected in the soil of rusty root-affected P. ginseng, whereas significantly enriched fungal genera (including Xenopolyscytalum, Arthrobotrys, Chalara, Cryptococcus, and Scutellinia) were primarily detected in the soil of healthy plants. Importantly, five fungal genera (Cylindrocarpon, Acrophialophora, Alternaria, Doratomyces, and Fusarium) were significantly enriched in the soil of rusty root-affected plants compared with that of healthy plants, suggesting that an increase in the relative abundance of these pathogenic fungi (Cylindrocarpon, Alternaria, and Fusarium) may be associated with ginseng rusty roots. Additionally, this study is the first to report that an increase in the relative abundances of Acrophialophora and Doratomyces in the rhizosphere of P. ginseng may be associated with the onset of rusty root symptoms in this plant. Our findings provide potentially useful information for developing biological control strategies against rusty root, as well as scope for future screening of fungal pathogens in rusty roots of P. ginseng.
Collapse
|
15
|
Nguyen VB, Linh Giang VN, Waminal NE, Park HS, Kim NH, Jang W, Lee J, Yang TJ. Comprehensive comparative analysis of chloroplast genomes from seven Panax species and development of an authentication system based on species-unique single nucleotide polymorphism markers. J Ginseng Res 2020; 44:135-144. [PMID: 32148396 PMCID: PMC7033337 DOI: 10.1016/j.jgr.2018.06.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Panax species are important herbal medicinal plants in the Araliaceae family. Recently, we reported the complete chloroplast genomes and 45S nuclear ribosomal DNA sequences from seven Panax species, two (P . quinqu e folius and P . trifolius) from North America and five (P . ginseng, P . notoginseng, P . japonicus, P . vietnamensis, and P . stipuleanatus) from Asia. METHODS We conducted phylogenetic analysis of these chloroplast sequences with 12 other Araliaceae species and comprehensive comparative analysis among the seven Panax whole chloroplast genomes. RESULTS We identified 1,128 single nucleotide polymorphisms (SNP) in coding gene sequences, distributed among 72 of the 79 protein-coding genes in the chloroplast genomes of the seven Panax species. The other seven genes (including psaJ, psbN, rpl23, psbF, psbL, rps18, and rps7) were identical among the Panax species. We also discovered that 12 large chloroplast genome fragments were transferred into the mitochondrial genome based on sharing of more than 90% sequence similarity. The total size of transferred fragments was 60,331 bp, corresponding to approximately 38.6% of chloroplast genome. We developed 18 SNP markers from the chloroplast genic coding sequence regions that were not similar to regions in the mitochondrial genome. These markers included two or three species-specific markers for each species and can be used to authenticate all the seven Panax species from the others. CONCLUSION The comparative analysis of chloroplast genomes from seven Panax species elucidated their genetic diversity and evolutionary relationships, and 18 species-specific markers were able to discriminate among these species, thereby furthering efforts to protect the ginseng industry from economically motivated adulteration.
Collapse
Affiliation(s)
- Van Binh Nguyen
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Vo Ngoc Linh Giang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Nomar Espinosa Waminal
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Seung Park
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Nam-Hoon Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Woojong Jang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Junki Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| |
Collapse
|
16
|
Ginsenoside Rb1 exerts antiarrhythmic effects by inhibiting I Na and I CaL in rabbit ventricular myocytes. Sci Rep 2019; 9:20425. [PMID: 31892729 PMCID: PMC6938504 DOI: 10.1038/s41598-019-57010-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022] Open
Abstract
Ginsenoside Rb1 exerts its pharmacological action by regulating sodium, potassium and calcium ion channels in the membranes of nerve cells. These ion channels are also present in cardiomyocytes, but no studies have been reported to date regarding the effects of Rb1 on cardiac sodium currents (INa), L-type calcium currents (ICaL) and action potentials (APs). Additionally, the antiarrhythmic potential of Rb1 has not been assessed. In this study, we used a whole-cell patch clamp technique to assess the effect of Rb1 on these ion channels. The results showed that Rb1 inhibited INa and ICaL, reduced the action potential amplitude (APA) and maximum upstroke velocity (Vmax), and shortened the action potential duration (APD) in a concentration-dependent manner but had no effect on the inward rectifier potassium current (IK1), delayed rectifier potassium current (IK) or resting membrane potential (RMP). We also designed a pathological model at the cellular and organ level to verify the role of Rb1. The results showed that Rb1 abolished high calcium-induced delayed afterdepolarizations (DADs), depressed the increase in intracellular calcium ([Ca2+]i), relieved calcium overload and protected cardiomyocytes. Rb1 can also reduce the occurrence of ventricular premature beats (VPBs) and ventricular tachycardia (VT) in ischemia-reperfusion (I-R) injury.
Collapse
|
17
|
Yuan G, Han A, Wu J, Lu Y, Zhang D, Sun Y, Zhang J, Zhao M, Zhang B, Cui X. Bao Yuan decoction and Tao Hong Si Wu decoction improve lung structural remodeling in a rat model of myocardial infarction: Possible involvement of suppression of inflammation and fibrosis and regulation of the TGF-β1/Smad3 and NF-κB pathways. Biosci Trends 2019; 12:491-501. [PMID: 30473557 DOI: 10.5582/bst.2018.01242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chronic heart failure (CHF) leads to pulmonary structural remodeling, which may be a key factor for poor clinical outcomes in patients with end-stage heart failure, and few effective therapeutic options are presently available. The aim of the current study was to explore the mechanism of action and pulmonary-protective effects of treatment with Bao Yuan decoction combined with Tao Hong Si Wu decoction (BYTH) on lung structural remodeling in rats with ischemic heart failure. In a model of myocardial infarction (MI) induced by ligation of the left anterior descending (LAD) artery, rats were treated with BYTH. Heart function and morphometry were measured followed by echocardiography, histological staining, and immunohistochemical analysis of lung sections. The levels of transforming growth factor-β1 (TGF-β1), type I collagen, phosphorylated-Smad3 (p-Smad3), tumor necrosis factor-α (TNF-α), toll-like receptor 4 (TLR4), active nuclear factor κB (NF-κB) and alpha smooth muscle actin (α-SMA) were detected using Western blotting. Lung weight increased after an infarct with no evidence of pulmonary edema and returned to normal as a result of BYTH. In addition, BYTH treatment reduced levels of type I collagen, TGF-β1, and α-SMA expression and decreased the phosphorylation of Smad3 in the lungs of rats after MI. BYTH treatment also reduced the elevated levels of lung inflammatory mediators such as TNF-α, TLR4, and NF-κB. Results suggested that BYTH could effectively improve lung structural remodeling after MI because of its anti-inflammatory and anti-fibrotic action, which may be mediated by suppression of the TGF-β1/Smad3 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Guozhen Yuan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
| | - Anbang Han
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
| | - Jing Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
| | - Yingdong Lu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
| | - Dandan Zhang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
| | - Yuxiu Sun
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
| | | | - Mingjing Zhao
- The Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine
| | - Bingbing Zhang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
| | - Xiangning Cui
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
| |
Collapse
|
18
|
Ginsenoside Re Improves Isoproterenol-Induced Myocardial Fibrosis and Heart Failure in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3714508. [PMID: 30713572 PMCID: PMC6332977 DOI: 10.1155/2019/3714508] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/04/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022]
Abstract
Objective. Panax ginseng is used widely for treatment of cardiovascular disorders in China. Ginsenoside Re is the main chemical component of P. ginseng. We aimed to investigate the protective effect of ginsenoside Re on isoproterenol-induced myocardial fibrosis and heart failure in rats. Methods. A model of myocardial fibrosis and heart failure was established by once-daily subcutaneous injection of isoproterenol (5 mg/kg/day) to rats for 7 days. Simultaneously, rats were orally administrated ginsenoside Re (5 or 20 mg/kg) or vehicle daily for 4 weeks. Results. Isoproterenol enhanced the heart weight, myocardial fibrosis, and hydroxyproline content in rat hearts. Ginsenoside Re inhibited (at least in part) the isoproterenol-induced increase in heart weight, myocardial fibrosis, and hydroxyproline content. Compared with the isoproterenol group, treatment with ginsenoside Re ameliorated changes in left ventricular systolic pressure, left ventricular end diastolic pressure, and the positive and negative maximal values of the first derivative of left ventricular pressure. Ginsenoside Re administration also resulted in decreased expression of transforming growth factor (TGF)-β1 in serum and decreased expression of Smad3 and collagen I in heart tissue. Conclusion. Ginsenoside Re can improve isoproterenol-induced myocardial fibrosis and heart failure by regulation of the TGF-β1/Smad3 pathway.
Collapse
|
19
|
Kim N, Jayakodi M, Lee S, Choi B, Jang W, Lee J, Kim HH, Waminal NE, Lakshmanan M, van Nguyen B, Lee YS, Park H, Koo HJ, Park JY, Perumal S, Joh HJ, Lee H, Kim J, Kim IS, Kim K, Koduru L, Kang KB, Sung SH, Yu Y, Park DS, Choi D, Seo E, Kim S, Kim Y, Hyun DY, Park Y, Kim C, Lee T, Kim HU, Soh MS, Lee Y, In JG, Kim H, Kim Y, Yang D, Wing RA, Lee D, Paterson AH, Yang T. Genome and evolution of the shade-requiring medicinal herb Panax ginseng. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1904-1917. [PMID: 29604169 PMCID: PMC6181221 DOI: 10.1111/pbi.12926] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/19/2018] [Accepted: 03/18/2018] [Indexed: 05/19/2023]
Abstract
Panax ginseng C. A. Meyer, reputed as the king of medicinal herbs, has slow growth, long generation time, low seed production and complicated genome structure that hamper its study. Here, we unveil the genomic architecture of tetraploid P. ginseng by de novo genome assembly, representing 2.98 Gbp with 59 352 annotated genes. Resequencing data indicated that diploid Panax species diverged in association with global warming in Southern Asia, and two North American species evolved via two intercontinental migrations. Two whole genome duplications (WGD) occurred in the family Araliaceae (including Panax) after divergence with the Apiaceae, the more recent one contributing to the ability of P. ginseng to overwinter, enabling it to spread broadly through the Northern Hemisphere. Functional and evolutionary analyses suggest that production of pharmacologically important dammarane-type ginsenosides originated in Panax and are produced largely in shoot tissues and transported to roots; that newly evolved P. ginseng fatty acid desaturases increase freezing tolerance; and that unprecedented retention of chlorophyll a/b binding protein genes enables efficient photosynthesis under low light. A genome-scale metabolic network provides a holistic view of Panax ginsenoside biosynthesis. This study provides valuable resources for improving medicinal values of ginseng either through genomics-assisted breeding or metabolic engineering.
Collapse
Affiliation(s)
- Nam‐Hoon Kim
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - Murukarthick Jayakodi
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - Sang‐Choon Lee
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | | | - Woojong Jang
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - Junki Lee
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - Hyun Hee Kim
- Department of Life ScienceChromosome Research InstituteSahmyook UniversitySeoulKorea
| | - Nomar E. Waminal
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
- Department of Life ScienceChromosome Research InstituteSahmyook UniversitySeoulKorea
| | - Meiyappan Lakshmanan
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR)Singapore CitySingapore
| | - Binh van Nguyen
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - Yun Sun Lee
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - Hyun‐Seung Park
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - Hyun Jo Koo
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - Jee Young Park
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - Sampath Perumal
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - Ho Jun Joh
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - Hana Lee
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - Jinkyung Kim
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - In Seo Kim
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - Kyunghee Kim
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - Lokanand Koduru
- School of Chemical EngineeringSungkyunkwan UniversityJangan‐gu, Suwon, Gyeonggi‐doKorea
| | - Kyo Bin Kang
- College of Pharmacy and Research Institute of Pharmaceutical ScienceSeoul National UniversitySeoulKorea
| | - Sang Hyun Sung
- College of Pharmacy and Research Institute of Pharmaceutical ScienceSeoul National UniversitySeoulKorea
| | - Yeisoo Yu
- Phyzen Genomics InstituteSeongnamGyeonggi‐doKorea
| | - Daniel S. Park
- Department of Organismic and Evolutionary BiologyHarvard University HerbariaCambridgeMAUSA
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - Eunyoung Seo
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - Seungill Kim
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - Young‐Chang Kim
- Planning and Coordination DivisionNIHS, RDAWanju‐gunJeollabuk‐doKorea
| | - Dong Yun Hyun
- Ginseng Research DivisionNational Institute of Horticultural & Herbal Science, RDAEumseongChungcheongbuk‐doKorea
| | - Youn‐Il Park
- Department of Biological SciencesChungnam National UniversityDaejeonKorea
| | - Changsoo Kim
- Department of Crop ScienceChungnam National UniversityDaejeonKorea
| | - Tae‐Ho Lee
- Genomics DivisionNational Institute of Agricultural SciencesJeonjuJeollabuk‐doKorea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource EngineeringPlant Engineering Research InstituteSejong UniversitySeoulKorea
| | - Moon Soo Soh
- Division of Integrative Bioscience and BiotechnologySejong UniversitySeoulKorea
| | - Yi Lee
- Department of Industrial Plant Science & TechnologyChungbuk National UniversityCheongjuChungcheongbuk‐doKorea
| | - Jun Gyo In
- Laboratory of Resource and AnalysisR&D HeadquartersKorea Ginseng CorporationDaejeonKorea
| | - Heui‐Soo Kim
- Department of Biological SciencesCollege of Natural SciencesPusan National UniversityBusanKorea
| | - Yong‐Min Kim
- Korean Bioinformation CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonKorea
| | - Deok‐Chun Yang
- Graduate School of Biotechnology and Ginseng BankKyung Hee UniversityYonginGyeonggi‐doKorea
| | - Rod A. Wing
- Arizona Genomics InstituteSchool of Plant SciencesThe University of ArizonaTucsonAZUSA
| | - Dong‐Yup Lee
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR)Singapore CitySingapore
- School of Chemical EngineeringSungkyunkwan UniversityJangan‐gu, Suwon, Gyeonggi‐doKorea
| | - Andrew H. Paterson
- Plant Genome Mapping LaboratoryCollege of Agricultural and Environmental Sciences and Franklin College of Arts and SciencesUniversity of GeorgiaAthensGAUSA
| | - Tae‐Jin Yang
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| |
Collapse
|
20
|
Hu J, Cheng P, Huang GY, Cai GW, Lian FZ, Wang XY, Gao S. Effects of Xin-Ji-Er-Kang on heart failure induced by myocardial infarction: Role of inflammation, oxidative stress and endothelial dysfunction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 42:245-257. [PMID: 29655692 DOI: 10.1016/j.phymed.2018.03.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 01/13/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Xin-Ji-Er-Kang (XJEK) is a Chinese herbal formula, which has been reported to exert effective protection on cardiovascular diseases like hypertension and myocarditis. PURPOSE To elucidate the protective effects of XJEK on heart failure (HF) induced by myocardial infarction (MI) through the amelioration of inflammation, oxidative stress (OS) and endothelial dysfunction(ED). MATERIALS AND METHODS Fifty-seven male KM mice were randomized into the following six groups (n = 9-10 for each): control group, model group, MI+XJEK low dose group(XJEKL) group, MI+XJEK middle dose group(XJEKM), MI+XJEK high dose group(XJEKH), and MI+fosinopril group (positive control group). After treatment for four weeks, electrocardiography (ECG) and haemodynamics were recorded. Serum and tissues were collected for further analysis. Endothelium-dependent relaxation induced by acetylcholine was assessed in isolated thoracic aorta ring experiment. Hematoxylin and eosin (HE) and Van Gieson (VG) staining were used to detect the pathological changes of heart and thoracic aorta. Colorimetric analysis was employed to determine serum nitric oxide level (NO), malondialdehyde (MDA) concentration and superoxide dismutase (SOD) activity. ELISA was used to detect serum B-type natriuretic peptide (BNP) and serum inflammatory cytokines, as well as endothelial NO synthetase (eNOS), angiotensinII (Ang II) and endothelin-1(ET-1) concentration in both serum and cardiac tissues. Immunohistochemistry and Western blotting (WB) were employed to detect eNOS and inflammatory cytokine expressions in cardiac tissues. RESULTS XJEK administration markedly ameliorated cardiac dysfunction and abnormal ECG manifested by decreased weight/body weight (HW/BW) ratio, BNP and remedied hypertrophy of cardiomyocytes and deposition of collagen, which might be in part attributed to the increased SOD and decreased MDA in serum. Furthermore, XJEK administration improved ED with boosted eNOS activities in serum and cardiac tissues, as well as up-regulated NO levels in serum, down-regulated Ang II and ET-1 content in serum and cardiac tissues. Lastly, protein expression of pro-inflammation cytokines significantly decreased, and anti-inflammatory cytokine was significantly enhanced in serum and cardiac tissues compared to model group. CONCLUSION XJEK may exert beneficial effects on HF induced by MI in mice, and the underlying mechanism may be attributable to the amelioration of ED, anti-OS and anti-inflammation effects.
Collapse
Affiliation(s)
- Juan Hu
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Pan Cheng
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Guang-Yao Huang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Guo-Wei Cai
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Feng-Zhen Lian
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yun Wang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
21
|
Xu W, Choi HK, Huang L. State of Panax ginseng Research: A Global Analysis. Molecules 2017; 22:E1518. [PMID: 28892002 PMCID: PMC6151615 DOI: 10.3390/molecules22091518] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/27/2017] [Accepted: 09/01/2017] [Indexed: 11/30/2022] Open
Abstract
This article aims to understand the global and longitudinal trends of research on Panax ginseng. We used bibliometrics to analyze 3974 papers collected from the Web of ScienceTM Core Collection database during 1959-2016. The number of publications showed a steady growth before 2000 and exponentially increased in stage III (2000-2016, about 86% of the papers were published). Research on P. ginseng was conducted in 64 countries, mainly in Asia; in particular, 41% and 28% of the publications were from South Korea and China, respectively. The institutions from South Korea and China had high publication output and close cooperation and provided the majority of financial support. All top 10 authors and four of the top 20 journals in terms of number of publications originated from South Korea. The leading research subjects were pharmacology (39%), plant science (26%), and integrative complementary medicine (19%). The hotspot of P. ginseng research transformed from basic science to application, and multidisciplinary sciences will play a substantial role in the future. This study provides a comprehensive analysis to elucidate the global distribution, collaboration patterns, and research trends in the P. ginseng domain.
Collapse
Affiliation(s)
- Wanqi Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing 100193, China.
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea.
| | - Linfang Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing 100193, China.
| |
Collapse
|
22
|
Ginsenoside-Rb1 Protects Hypoxic- and Ischemic-Damaged Cardiomyocytes by Regulating Expression of miRNAs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:171306. [PMID: 26074986 PMCID: PMC4449925 DOI: 10.1155/2015/171306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/25/2014] [Accepted: 10/02/2014] [Indexed: 12/13/2022]
Abstract
Ginsenoside (GS-Rb1) is one of the most important active compounds of ginseng, with extensive evidence of its cardioprotective properties. However, the miRNA mediated mechanism of GS-Rb1 on cardiomyocytes remains unclear. Here, the roles of miRNAs in cardioprotective activity of GS-Rb1 were investigated in hypoxic- and ischemic-damaged cardiomyocytes. Neonatal rat cardiomyocytes (NRCMs) were first isolated, cultured, and then incubated with or without GS-Rb1 (2.5–40 μM) in vitro under conditions of hypoxia and ischemia. Cell growth, proliferation, and apoptosis were detected by MTT and flow cytometry. Expressions of various microRNAs were analyzed by real-time PCR. Compared with that of the control group, GS-Rb1 significantly decreased cell death in a dose-dependent manner and expressions of mir-1, mir-29a, and mir-208 obviously increased in the experimental model groups. In contrast, expressions of mir-21 and mir-320 were significantly downregulated and GS-Rb1 could reverse the differences in a certain extent. The miRNAs might be involved in the protective effect of GS-Rb1 on the hypoxia/ischemia injuries in cardiomyocytes. The effect might be based on the upregulation of mir-1, mir-29a, and mir-208 and downregulation of mir-21 and mir-320. This might provide us a new target to explore the novel strategy for ischemic cardioprotection.
Collapse
|
23
|
Xie CL, Li JH, Wang WW, Zheng GQ, Wang LX. Neuroprotective effect of ginsenoside-Rg1 on cerebral ischemia/reperfusion injury in rats by downregulating protease-activated receptor-1 expression. Life Sci 2015; 121:145-51. [DOI: 10.1016/j.lfs.2014.12.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 11/30/2022]
|
24
|
Yiqi Huoxue Recipe Improves Heart Function through Inhibiting Apoptosis Related to Endoplasmic Reticulum Stress in Myocardial Infarction Model of Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:745919. [PMID: 24864159 PMCID: PMC4016842 DOI: 10.1155/2014/745919] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/14/2014] [Accepted: 03/16/2014] [Indexed: 12/20/2022]
Abstract
Objective. To explore the mechanism of cardioprotective effects of Chinese medicine, Yiqi Huoxue recipe, in rats with myocardial infarction- (MI-) induced heart failure. Methods. Male Sprague-Dawley rats underwent left anterior descending artery (LAD) ligation or sham operation. The surviving MI rats were divided randomly into three groups: MI (5 mL/kg/d NS by gavage), MI + Metoprolol Tartrate (MT) (12 mg/kg/d MT by gavage), and MI + Yiqi Huoxue (5 mL/kg recipe by gavage). And the sham operation rats were given 5 mL/kg/d normal saline. Treatments were given on the day following surgery for 4 weeks. Then rats were detected for heart structure and function by transthoracic echocardiography. Apoptosis in heart tissues was detected by TUNEL staining. To determine whether the endoplasmic reticulum (ER) stress response pathway is included in the cardioprotective function of the recipe, ER stress related proteins such as GRP78 and caspase-12 were examined. Results. Yiqi Huoxue recipe attenuated heart function injury, reversed histopathological damage, alleviated myocardial apoptosis and inhibited ER stress in MI rats. Conclusion. All the results suggest that Yiqi Huoxue recipe improves the injured heart function maybe through inhibition of ER stress response pathway, which is a promising target in therapy for heart failure.
Collapse
|
25
|
Zhao Y, Yin J, Guo H, Zhang Y, Xiao W, Sun C, Wu J, Qu X, Yu J, Wang X, Xiao J. The complete chloroplast genome provides insight into the evolution and polymorphism of Panax ginseng. FRONTIERS IN PLANT SCIENCE 2014; 5:696. [PMID: 25642231 PMCID: PMC4294130 DOI: 10.3389/fpls.2014.00696] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/23/2014] [Indexed: 05/21/2023]
Abstract
Panax ginseng C.A. Meyer (P. ginseng) is an important medicinal plant and is often used in traditional Chinese medicine. With next generation sequencing (NGS) technology, we determined the complete chloroplast genome sequences for four Chinese P. ginseng strains, which are Damaya (DMY), Ermaya (EMY), Gaolishen (GLS), and Yeshanshen (YSS). The total chloroplast genome sequence length for DMY, EMY, and GLS was 156,354 bp, while that for YSS was 156,355 bp. Comparative genomic analysis of the chloroplast genome sequences indicate that gene content, GC content, and gene order in DMY are quite similar to its relative species, and nucleotide sequence diversity of inverted repeat region (IR) is lower than that of its counterparts, large single copy region (LSC) and small single copy region (SSC). A comparison among these four P. ginseng strains revealed that the chloroplast genome sequences of DMY, EMY, and GLS were identical and YSS had a 1-bp insertion at base 5472. To further study the heterogeneity in chloroplast genome during domestication, high-resolution reads were mapped to the genome sequences to investigate the differences at the minor allele level; 208 minor allele sites with minor allele frequencies (MAF) of ≥0.05 were identified. The polymorphism site numbers per kb of chloroplast genome sequence for DMY, EMY, GLS, and YSS were 0.74, 0.59, 0.97, and 1.23, respectively. All the minor allele sites located in LSC and IR regions, and the four strains showed the same variation types (substitution base or indel) at all identified polymorphism sites. Comparison results of heterogeneity in the chloroplast genome sequences showed that the minor allele sites on the chloroplast genome were undergoing purifying selection to adapt to changing environment during domestication process. A study of P. ginseng chloroplast genome with particular focus on minor allele sites would aid in investigating the dynamics on the chloroplast genomes and different P. ginseng strains typing.
Collapse
Affiliation(s)
- Yongbing Zhao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Jinlong Yin
- School of Pharmaceutical Sciences, Changchun University of Chinese MedicineChangchun, China
| | - Haiyan Guo
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
| | - Yuyu Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Wen Xiao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Chen Sun
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Jiayan Wu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
| | - Xiaobo Qu
- School of Pharmaceutical Sciences, Changchun University of Chinese MedicineChangchun, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
| | - Xumin Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
- *Correspondence: Jingfa Xiao and Xumin Wang, Beijing Institute of Genomics, Chinese Academy of Sciences. NO.1 Beichen West Road, Chaoyang District, Beijing 100101, China e-mail: ;
| | - Jingfa Xiao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
- *Correspondence: Jingfa Xiao and Xumin Wang, Beijing Institute of Genomics, Chinese Academy of Sciences. NO.1 Beichen West Road, Chaoyang District, Beijing 100101, China e-mail: ;
| |
Collapse
|
26
|
Guo ZJ, Li CS. Therapeutic effects of Shenfu Injection on post-cardiac arrest syndrome. Chin J Integr Med 2013; 19:716-20. [PMID: 23975138 DOI: 10.1007/s11655-013-1566-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Indexed: 01/18/2023]
Abstract
Survival rates after cardiac arrest have not changed substantially over the past 5 decades. Postcardiac arrest (CA) syndrome (PCAS) is the primary reason for the high mortality rate after successful restoration of spontaneous circulation (ROSC). Intravenous administration of Shenfu Injection (, SFI) may attenuate post-CA myocardial dysfunction and cerebral injury, inhibit systemic ischemia/reperfusion responses, and treat underlying diseases. In this article, we reviewed the therapeutic effects of SFI in PCAS. SFI might be useful in the treatment of PCAS, incorporating the multi-link and multi-target advantages of Chinese medicine into PCAS management. Further experimental and clinical research to verify the therapeutic effects of SFI in PCAS is required.
Collapse
Affiliation(s)
- Zhi-jun Guo
- Emergency Department of Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | | |
Collapse
|