1
|
Zhang Y, Dong W, Zhao M, Zhang J, Li L, Ma Y, Meng X, Wang Y. Identification and Analysis of Phenolic Compounds in Vaccinium uliginosum L. and Its Lipid-Lowering Activity In Vitro. Foods 2024; 13:3438. [PMID: 39517222 PMCID: PMC11545093 DOI: 10.3390/foods13213438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Vaccinium uliginosum L. (VU), rich in polyphenols, is an important wild berry resource primarily distributed in extremely cold regions. However, the detailed composition of Vaccinium uliginosum L. polyphenols (VUPs) has not been reported, which limits the development and utilization of VU. In this study, VU-free polyphenols (VUFPs) and VU-bound polyphenols (VUBPs) were, respectively, extracted using an ultrasonic, complex enzyme and alkali extraction method; the compositions were identified using ultra-performance liquid chromatography-electrospray ionization mass spectrometry, and lipid-lowering activity in vitro was evaluated. The results showed that 885 polyphenols and 47 anthocyanins were detected in the VUFPs and VUBPs, and 30 anthocyanin monomers were firstly detected in VU. Compared with the model group, the accumulation of lipid droplets and the total cholesterol and triglyceride contents in the high-concentration VUP group reduced by 36.95%, 65.82%, and 62.43%, respectively, and liver damage was also alleviated. It was also found that VUP can regulate the level of Asialoglycoprotein receptor 1, a new target for lipid lowering. In summary, this study provides a detailed report on VUP for the first time, confirming that VUP has lipid-lowering potential in vitro. These findings suggest new strategies and theoretical support for the development and utilization of VU, especially in the field of functional foods.
Collapse
Affiliation(s)
- Ying Zhang
- College of Food Science, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang 110866, China
| | - Wenjiang Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
| | - Manjun Zhao
- College of Food Science, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang 110866, China
| | - Jiyue Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
| | - Li Li
- College of Food Science, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang 110866, China
| | - Yan Ma
- Center of Experiment Teaching, Shenyang Normal University, Shenyang 110034, China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang 110866, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang 110866, China
| |
Collapse
|
2
|
Park C, Hwangbo H, Kim SO, Noh JS, Park SH, Hong SH, Hong SH, Kim GY, Choi YH. Anthocyanins Inhibits Oxidative Injury in Human Retinal Pigment Epithelial ARPE-19 Cells via Activating Heme Oxygenase-1. J Microbiol Biotechnol 2024; 34:596-605. [PMID: 38044685 PMCID: PMC11016763 DOI: 10.4014/jmb.2310.10011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023]
Abstract
Anthocyanins belong to phenolic pigments and are known to have various pharmacological activities. This study aimed to investigate whether anthocyanins could inhibit hydrogen peroxide (H2O2)-induced oxidative damage in human retinal pigment epithelial ARPE-19 cells. Our results indicated that anthocyanins suppressed H2O2-induced genotoxicity, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione. Anthocyanins also suppressed H2O2-induced apoptosis by reversing the Bcl-2/Bax ratio and inhibiting caspase-3 activation. Additionally, anthocyanins attenuated the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Moreover, anthocyanins increased the expression of heme oxygenase-1 (HO-1) as well as its activity, which was correlated with the phosphorylation and nuclear translocation of nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the cytoprotective and anti-apoptotic effects of anthocyanins were significantly attenuated by the HO-1 inhibitor, demonstrating that anthocyanins promoted Nrf2-induced HO-1 activity to prevent ARPE-19 cells from oxidative stress. Therefore, our findings suggest that anthocyanins, as Nrf2 activators, have potent ROS scavenging activity and may have the potential to protect ocular injury caused by oxidative stress.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Republic of Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Sung Ok Kim
- Department of Food Science and Biotechnology, College of Engineering, Kyungsung University, Busan 48434, Republic of Korea
| | - Jeong Sook Noh
- Department of Food Science & Nutrition, Tongmyong University, Busan 48520, Republic of Korea
| | - Shin-Hyung Park
- Department of Pathology, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Su Hyun Hong
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Sang Hoon Hong
- Department of Internal Medicine, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| |
Collapse
|
3
|
Kopystecka A, Kozioł I, Radomska D, Bielawski K, Bielawska A, Wujec M. Vaccinium uliginosum and Vaccinium myrtillus-Two Species-One Used as a Functional Food. Nutrients 2023; 15:4119. [PMID: 37836403 PMCID: PMC10574057 DOI: 10.3390/nu15194119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Vaccinium uliginosum L. (commonly known as bog bilberry) and Vaccinium myrtillus L. (commonly known as bilberry) are species of the genus Vaccinium (family Ericaceae). The red-purple-blue coloration of blueberries is attributed largely to the anthocyanins found in bilberries. Anthocyanins, known for their potent biological activity as antioxidants, have a significant involvement in the prophylaxis of cancer or other diseases, including those of metabolic origin. Bilberry is the most important economically wild berry in Northern Europe, and it is also extensively used in juice and food production. A review of the latest literature was performed to assess the composition and biological activity of V. uliginosum and V. myrtillus. Clinical studies confirm the benefits of V. uliginosum and V. myrtillus supplementation as part of a healthy diet. Because of their antioxidant, anti-inflammatory, anti-cancer, and apoptosis-reducing activity, both bog bilberries and bilberries can be used interchangeably as a dietary supplement with anti-free radical actions in the prevention of cancer diseases and cataracts, or as a component of sunscreen preparations.
Collapse
Affiliation(s)
- Agnieszka Kopystecka
- Students’ Scientific Circle on Medical Law at the Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (I.K.)
| | - Ilona Kozioł
- Students’ Scientific Circle on Medical Law at the Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (I.K.)
| | - Dominika Radomska
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego 1 Street, 15-089 Bialystok, Poland;
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego 1 Street, 15-089 Bialystok, Poland;
| | - Anna Bielawska
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego 1 Street, 15-089 Bialystok, Poland;
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| |
Collapse
|
4
|
Wang Y, Lu Y, Chen W, Xie X. Inhibition of ferroptosis alleviates high-power microwave-induced myocardial injury. Front Cardiovasc Med 2023; 10:1157752. [PMID: 37168653 PMCID: PMC10165085 DOI: 10.3389/fcvm.2023.1157752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Background The use of high-power microwave (HPM) in our daily live is becoming more and more widespread, but the safety has also caused our concern. And ferroptosis is a newly discovered modality that can regulate cell death in recent years. The aim of our study was to demonstrate whether ferroptosis is an important cause of myocardial injury caused by HPM. And whether myocardial injury caused by HPM can be alleviated by inhibiting ferroptosis. Methods We verified the extent of myocardial damage by different doses of HPM through in vivo and in vitro assays, respectively. In addition, GPX4 was knocked down and overexpressed in cardiac myocytes to verify the altered sensitivity of cardiac myocytes to HPM. Finally, the therapeutic effect of Fer-1 and tanshinoneIIA on myocardial injury caused by HPM was verified in in vivo and in vitro assays. Results We found that cardiac tissue and cardiomyocyte injury in mice gradually increased with increasing HPM dose, while ferroptosis markers were consistent with the injury trend. Gpx4 had an important role in ferroptosis in cardiomyocytes caused by HPM. Finally, tanshinoneIIA and Fer-1 could attenuate the damage of cardiac tissues and cardiomyocytes caused by HPM. Conclusions In conclusion, our study found that ferroptosis, a novel mode of cell death, is present in myocardial injury caused by HPM. Moreover, tanshinone, a drug already in clinical use, can significantly reduce myocardial injury caused by HPM, which is promising to provide new therapeutic ideas for myocardial injury caused by HPM.
Collapse
Affiliation(s)
| | | | - Wen Chen
- Correspondence: Xiaohua Xie Wen Chen
| | | |
Collapse
|
5
|
Xue H, Sang Y, Gao Y, Zeng Y, Liao J, Tan J. Research Progress on Absorption, Metabolism, and Biological Activities of Anthocyanins in Berries: A Review. Antioxidants (Basel) 2022; 12:antiox12010003. [PMID: 36670865 PMCID: PMC9855064 DOI: 10.3390/antiox12010003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Berries, as the best dietary sources for human health, are rich in anthocyanins, vitamins, fiber, polyphenols, essential amino acids, and other ingredients. Anthocyanins are one of the most important bioactive components in berries. The attractive color of berries is attributed to the fact that berries contain different kinds of anthocyanins. Increasing research activity has indicated that anthocyanins in berries show various biological activities, including protecting vision; antioxidant, anti-inflammatory and anti-tumor qualities; inhibition of lipid peroxidation; anti-cardiovascular disease properties; control of hypoglycemic conditions; and other activities. Hence, berries have high nutritional and medicinal values. The recognized absorption, metabolism, and biological activities of anthocyanins have promoted their research in different directions. Hence, it is necessary to systematically review the research progress and future prospects of anthocyanins to promote a better understanding of anthocyanins. The absorption, metabolism, and biological activities of anthocyanins from berries were reviewed in this paper. The findings of this study provide an important reference for basic research, product development and utilization of berries' anthocyanins in food, cosmetics, and drugs.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yumei Sang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yuan Zeng
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jianqing Liao
- College of Physical Science and Engineering, Yichun University, No. 576 Xuefu Road, Yichun 336000, China
- Correspondence: (J.L.); (J.T.); Tel.: +86-0312-5075644 (J.L. & J.T.)
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
- Correspondence: (J.L.); (J.T.); Tel.: +86-0312-5075644 (J.L. & J.T.)
| |
Collapse
|