1
|
Goel H, Binkley N, Boggild M, Chan WP, Leslie WD, McCloskey E, Morgan SL, Silva BC, Cheung AM. Clinical Use of Trabecular Bone Score: The 2023 ISCD Official Positions. J Clin Densitom 2024; 27:101452. [PMID: 38228014 DOI: 10.1016/j.jocd.2023.101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Osteoporosis can currently be diagnosed by applying the WHO classification to bone mineral density (BMD) assessed by dual-energy x-ray absorptiometry (DXA). However, skeletal factors other than BMD contribute to bone strength and fracture risk. Lumbar spine TBS, a grey-level texture measure which is derived from DXA images has been extensively studied, enhances fracture prediction independent of BMD and can be used to adjust fracture probability from FRAX® to improve risk stratification. The purpose of this International Society for Clinical Densitometry task force was to review the existing evidence and develop recommendations to assist clinicians regarding when and how to perform, report and utilize TBS. Our review concluded that TBS is most likely to alter clinical management in patients aged ≥ 40 years who are close to the pharmacologic intervention threshold by FRAX. The TBS value from L1-L4 vertebral levels, without vertebral exclusions, should be used to calculate adjusted FRAX probabilities. L1-L4 vertebral levels can be used in the presence of degenerative changes and lumbar compression fractures. It is recommended not to report TBS if extreme structural or pathological artifacts are present. Monitoring and reporting TBS change is unlikely to be helpful with the current version of the TBS algorithm. The next version of TBS software will include an adjustment based upon directly measured tissue thickness. This is expected to improve performance and address some of the technical factors that affect the current algorithm which may require modifications to these Official Positions as experience is acquired with this new algorithm.
Collapse
Affiliation(s)
| | - Neil Binkley
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Miranda Boggild
- University of Toronto, Department of Medicine, Toronto, Canada
| | - Wing P Chan
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; and Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - William D Leslie
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Eugene McCloskey
- Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Sheffield, UK
| | - Sarah L Morgan
- University of Alabama at Birmingham, Osteoporosis Prevention and Treatment Clinic and DXA Facility, Birmingham, AL, United States
| | - Barbara C Silva
- Medical School, Centro Universitario de Belo Horizonte (UniBH), MG, Brazil Bone Metabolic diseases Unit, Santa Casa Hospital, Belo Horizonte, MG, Brazil Clinic of Endocrinology, Felicio Rocho Hospital, Belo Horizonte, MG, Brazil
| | - Angela M Cheung
- Centre of Excellence in Skeletal Health Assessment, University of Toronto, Toronto, Ontario, Canada; Osteoporosis Program, University Health Network and Sinai Health System, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Leslie WD, Goel H, Binkley N, McCloskey EV, Hans D. Contributions of Clinical and Technical Factors to Longitudinal Change in Trabecular Bone Score and Bone Density: A Registry-Based Individual-Level Analysis. J Bone Miner Res 2023; 38:512-521. [PMID: 36655775 DOI: 10.1002/jbmr.4774] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/03/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Lumbar spine trabecular bone score (TBS), a gray-level texture measure derived from spine dual-energy X-ray absorptiometry (DXA) images, is a bone mineral density (BMD)-independent risk factor for fracture. An unresolved question is whether TBS is sufficiently responsive to change over time or in response to widely used osteoporosis therapy at the individual level to serve as a useful biomarker. Using the Manitoba DXA Registry, we identified 11,643 individuals age 40 years and older with two fan-beam DXA scans performed on the same instrument within 5 years (mean interval 3.2 years), of whom 6985 (60.0%) received antiresorptive osteoporosis medication (majority oral bisphosphonate) between the scans. We examined factors that were associated with a change in lumbar spine TBS, lumbar spine BMD, and total hip BMD exceeding the 95% least significant change (LSC). Change exceeding the LSC was identified in 23.0% (9.3% increase, 13.8% decrease) of lumbar spine TBS, 38.2% (22.1% increase, 16.1% decrease) lumbar spine BMD, and 42.5% (17.6% increase, 24.9% decrease) total hip BMD measurement pairs. From regression models, the variables most strongly associated with significant change in TBS (decreasing order) were tissue thickness change, acquisition mode change, weight change, and spine percent fat change. Consistent with the insensitivity of TBS to oral antiresorptive therapies, use of these agents showed very little effect on TBS change. In contrast, for both spine BMD change and total hip BMD change, osteoporosis medication use was the most significant variable, whereas tissue thickness change, acquisition mode change, and weight change had relatively weak effects. In summary, change in spine TBS using the present algorithm appears to be strongly affected by technical factors. This suggests a limited role, if any, for using TBS change in untreated individuals or for monitoring response to antiresorptive treatment in routine clinical practice with the current version of the TBS algorithm. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- William D Leslie
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | | | - Neil Binkley
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Eugene V McCloskey
- Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Sheffield, UK
| | - Didier Hans
- Bone and Joint Department, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
3
|
Palomo T, Muszkat P, Weiler FG, Dreyer P, Brandão CMA, Silva BC. Update on trabecular bone score. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:694-706. [PMID: 36382759 PMCID: PMC10118821 DOI: 10.20945/2359-3997000000559] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Trabecular bone score (TBS) is an indirect and noninvasive measure of bone quality. A low TBS indicates degraded bone microarchitecture, predicts osteoporotic fracture, and is partially independent of clinical risk factors and bone mineral density (BMD). There is substantial evidence supporting the use of TBS to assess vertebral, hip, and major osteoporotic fracture risk in postmenopausal women, as well as to assess hip and major osteoporotic fracture risk in men aged > 50 years. TBS complements BMD information and can be used to adjust the FRAX (Fracture Risk Assessment) score to improve risk stratification. While TBS should not be used to monitor antiresorptive therapy, it may be potentially useful for monitoring anabolic therapy. There is also a growing body of evidence indicating that TBS is particularly useful as an adjunct to BMD for fracture risk assessment in conditions associated with increased fracture risk, such as type-2 diabetes, chronic corticosteroid excess, and other conditions wherein BMD readings are often misleading. The interference of abdominal soft tissue thickness (STT) on TBS should also be considered when interpreting these findings because image noise can impact TBS evaluation. A new TBS software version based on an algorithm that accounts for STT rather than BMI seems to correct this technical limitation and is under development. In this paper, we review the current state of TBS, its technical aspects, and its evolving role in the assessment and management of several clinical conditions.
Collapse
|
4
|
Hayden AC, Binkley N, Krueger D, Bernatz JT, Kadri A, Anderson PA. Effect of degeneration on bone mineral density, trabecular bone score and CT Hounsfield unit measurements in a spine surgery patient population. Osteoporos Int 2022; 33:1775-1782. [PMID: 35554615 DOI: 10.1007/s00198-022-06407-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/15/2022] [Indexed: 10/18/2022]
Abstract
UNLABELLED This study investigated the impact of spinal degeneration on bone mineral density (BMD), trabecular bone score (TBS), and CT Hounsfield units in an at-risk population. We found that BMD was increased by degeneration, whereas TBS and HU were unaffected. These findings support that TBS is not adversely affected by spinal degeneration. INTRODUCTION This study evaluated the impact of spinal degeneration on BMD and TBS measured by dual-energy x-ray absorptiometry (DXA) and on CT HU in a spine surgery patient population. METHODS A retrospective study of 63 patients referred for consideration of spine surgery or with history of spine surgery was performed. Patients were included if a DXA scan and a CT containing the lumbar spine were obtained within 18 months of each other. DXA data were collected and analyzed by vertebral level. Individual vertebrae were assessed for degenerative changes by qualitative evaluation of the anterior and posterior elements using CT. Degeneration scores were compared to BMD T-scores, TBS and CT HU at individual vertebral levels L1-4, and after applying International Society for Clinical Densitometry (ISCD) criteria for excluding vertebrae from diagnostic consideration. RESULTS Mean patient age and BMI were 67.2 years and 27.8 kg/m2, respectively; 79.4% were female. Mean (SD) lowest T-scores of the hip, spine, and lowest overall T-score were - 1.3 (1.4), - 1.7 (0.9), and - 1.9 (1.0), respectively. Osteoporosis was present by T-score in 38% and osteopenia in 52%; 10% had a history of osteoporotic fracture. The mean degeneration score of individual vertebrae was 4.1 on a 0-6 scale. T-score correlated moderately with degeneration score (Spearman's rho 0.484, p < 0.001), whereas TBS and HU were unrelated. ISCD excluded vertebrae had a higher degeneration score than included vertebrae (p = < 0.001). CONCLUSIONS In a spine surgery population, TBS and CT HU values are unrelated to degeneration score and thus appear unaffected by lumbar vertebral degenerative changes. Additionally, these data support the ISCD criteria for vertebral exclusion.
Collapse
Affiliation(s)
- A C Hayden
- University of Wisconsin Osteoporosis Clinical Research Program, Madison, WI, USA
| | - N Binkley
- University of Wisconsin Osteoporosis Clinical Research Program, Madison, WI, USA
| | - D Krueger
- University of Wisconsin Osteoporosis Clinical Research Program, Madison, WI, USA
| | - J T Bernatz
- University of Wisconsin Osteoporosis Clinical Research Program, Madison, WI, USA
| | - A Kadri
- University of Wisconsin Osteoporosis Clinical Research Program, Madison, WI, USA
| | - P A Anderson
- Department of Orthopedics Surgery and Rehabilitation, University of Wisconsin, UWMF Centennial Bldg, 1685 Highland Ave, 6th floor, Madison, WI, 53705-2281, USA.
| |
Collapse
|
5
|
Palomo T, Dreyer P, Muszkat P, Weiler FG, Bonansea TCP, Domingues FC, Vieira JGH, Silva BC, Brandão CMA. Effect of soft tissue noise on trabecular bone score in postmenopausal women with diabetes: A cross sectional study. Bone 2022; 157:116339. [PMID: 35051679 DOI: 10.1016/j.bone.2022.116339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Type 2 diabetes (T2D) is associated with increased fracture risk, despite similar or greater BMD compared to nondiabetics. TBS predicts fracture risk in T2D and nondiabetics. However, increased abdominal thickness, a common feature in T2D, may reduce TBS values. AIM To study the relationship among glycemic status, BMD and TBS, considering abdominal soft tissue thickness (STT) interference. METHODS Cross-sectional analysis of 493 women ≥65 years, with simultaneous DXA scans and HbA1c measures. STT and TBS (iNsight Software, v3.0) were derived from lumbar spine (LS) scans. Subjects were divided according to HbA1c levels: 1 (≥6.5%; n = 116), 2 (5.7-6.4%; n = 217) and 3 (≤5.6%; n = 160). Group 1 was further divided based on HbA1c and/or disease duration: 1a (HbA1c ≥ 7.5%; n = 42), 1b (HbA1c ≥ 6.5% and disease duration ≥5 years; n = 63) and 1c (HbA1c ≥ 7.5% and disease duration ≥5 years; n = 30). FINDINGS For the entire cohort, mean age, TBS, BMI and STT were 71.8 ± 6.0 years, 1.299 ± 0.101, 26.9 ± 4.1 kg/m2, and 21.4 ± 2.9 cm, respectively. LS-BMD was similar among groups. BMD in hip sites and STT were higher in group 1. TBS was lower in patients with higher HbA1c (P = 0.020), with a mean TBS in groups 1, 2, and 3 of 1.280, 1.299 and 1.314, respectively. This difference remained after adjusting for age, LS-BMD and BMI (P = 0.010). After replacing BMI with STT, TBS differences were no longer significant (P = 0.270). The same was observed when subgroups 1a and 1b were compared to group 3. However, for subgroup 1c, TBS remained lower compared to group 3, even after adjusting for age, LS-BMD and STT, with a borderline P-value (1.275 vs. 1.308; P = 0.047). CONCLUSION Higher HbA1c levels were associated with greater BMD in hip sites, higher abdominal STT and lower TBS values. However, after including the STT in the adjustment, TBS differences among groups disappeared, except in women with higher HbA1c levels and longer disease duration.
Collapse
Affiliation(s)
- Telma Palomo
- Bone Densitometry Service, Fleury Medicine and Healthcare, São Paulo, Brazil.
| | - Patricia Dreyer
- Bone Densitometry Service, Fleury Medicine and Healthcare, São Paulo, Brazil
| | - Patricia Muszkat
- Bone Densitometry Service, Fleury Medicine and Healthcare, São Paulo, Brazil
| | - Fernanda G Weiler
- Bone Densitometry Service, Fleury Medicine and Healthcare, São Paulo, Brazil
| | - Teresa C P Bonansea
- Bone Densitometry Service, Fleury Medicine and Healthcare, São Paulo, Brazil
| | | | - Jose G H Vieira
- Bone Densitometry Service, Fleury Medicine and Healthcare, São Paulo, Brazil; Department of Medicine, Endocrinology Unit, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Barbara C Silva
- Endocrinology Unit, Santa Casa de Belo Horizonte, Belo Horizonte, Brazil; Endocrinology Unit, Felicio Rocho Hospital, Belo Horizonte, Brazil; Department of Medicine, Centro Universitario de Belo Horizonte (UNI-BH), Belo Horizonte, Brazil
| | - Cynthia M A Brandão
- Bone Densitometry Service, Fleury Medicine and Healthcare, São Paulo, Brazil
| |
Collapse
|
6
|
Albano D, Agnollitto PM, Petrini M, Biacca A, Ulivieri FM, Sconfienza LM, Messina C. Operator-Related Errors and Pitfalls in Dual Energy X-Ray Absorptiometry: How to Recognize and Avoid Them. Acad Radiol 2021; 28:1272-1286. [PMID: 32839098 DOI: 10.1016/j.acra.2020.07.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
Dual-energy X-ray absorptiometry (DXA) is the most common modality for quantitative measurements of bone mineral density. Nevertheless, errors related to this exam are still very common, and may significantly impact on the final diagnosis and therapy. Operator-related errors may occur during each DXA step and can be related to wrong patient positioning, error in the acquisition process or in the scan analysis. The aim of this review is to provide a practical guide on how to recognize such errors in spine and hip DXA scan and how to avoid them, also presenting some of the most common artifacts encountered in clinical practice.
Collapse
Affiliation(s)
- Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, Milano 20161, Italy; Sezione di Scienze Radiologiche, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, Via del Vespro 127, 90127 Palermo, Italy
| | - Paulo Moraes Agnollitto
- Radiology Division / CCIFM, Ribeirão Preto Medical School, Av. Bandeirantes 3900, Ribeirão Preto, SP, Brazil
| | - Marcello Petrini
- Department of Radiology, Ospedale Guglielmo da Saliceto, via Taverna 49, Piacenza 29121, Italy
| | - Andrea Biacca
- IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, Milano 20161, Italy
| | - Fabio Massimo Ulivieri
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, UO Medicina Nucleare, Milano, Italy
| | - Luca Maria Sconfienza
- IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, Milano 20161, Italy; Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano 20122, Italy
| | - Carmelo Messina
- IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, Milano 20161, Italy; Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano 20122, Italy.
| |
Collapse
|
7
|
St Jeor JD, Jackson TJ, Xiong AE, Kadri A, Freedman BA, Sebastian AS, Currier BL, Nassr A, Fogelson JL, Kennel KA, Anderson PA, Elder BD. Osteoporosis in spine surgery patients: what is the best way to diagnose osteoporosis in this population? Neurosurg Focus 2021; 49:E4. [PMID: 32738802 DOI: 10.3171/2020.5.focus20277] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/14/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The goal of this study was to compare different recognized definitions of osteoporosis in patients with degenerative lumbar spine pathology undergoing elective spinal fusion surgery to determine which patient population should be considered for preoperative optimization. METHODS A retrospective review of patients in whom lumbar spine surgery was planned at 2 academic medical centers was performed, and the rate of osteoporosis was compared based on different recognized definitions. Assessments were made based on dual-energy x-ray absorptiometry (DXA), CT Hounsfield units (HU), trabecular bone score (TBS), and fracture risk assessment tool (FRAX). The rate of osteoporosis was compared based on different definitions: 1) the WHO definition (T-score ≤ -2.5) at total hip or spine; 2) CT HU of < 110; 3) National Bone Health Alliance (NBHA) guidelines; and 4) "expanded spine" criteria, which includes patients meeting NBHA criteria and/or HU < 110, and/or "degraded" TBS in the setting of an osteopenic T-score. Inclusion criteria were adult patients with a DXA scan of the total hip and/or spine performed within 1 year and a lumbar spine CT scan within 6 months of the physician visit. RESULTS Two hundred forty-four patients were included. The mean age was 68.3 years, with 70.5% female, 96.7% Caucasian, and the mean BMI was 28.8. Fracture history was reported in 53.8% of patients. The proportion of patients identified with osteoporosis on DXA, HUs, NBHA guidelines, and the authors' proposed "expanded spine" criteria was 25.4%, 36.5%, 75%, and 81.9%, respectively. Of the patients not identified with osteoporosis on DXA, 31.3% had osteoporosis based on HU, 55.1% had osteoporosis with NBHA, and 70.4% had osteoporosis with expanded spine criteria (p < 0.05), with poor correlations among the different assessment tools. CONCLUSIONS Limitations in the use of DXA T-scores alone to diagnose osteoporosis in patients with lumbar spondylosis has prompted interest in additional methods of evaluating bone health in the spine, such as CT HU, TBS, and FRAX, to inform guidelines that aim to reduce fracture risk. However, no current osteoporosis assessment was developed with a focus on improving outcomes in spinal surgery. Therefore, the authors propose an expanded spine definition for osteoporosis to identify a more comprehensive cohort of patients with potential poor bone health who could be considered for preoperative optimization, although further study is needed to validate these results in terms of clinical outcomes.
Collapse
Affiliation(s)
| | - Taylor J Jackson
- 2Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Ashley E Xiong
- 2Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Aamir Kadri
- 3Department of Orthopedics and Rehabilitative Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Brett A Freedman
- 2Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Arjun S Sebastian
- 2Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - Ahmad Nassr
- 2Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Jeremy L Fogelson
- 3Department of Orthopedics and Rehabilitative Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Kurt A Kennel
- 5Division of Endocrinology, Department of Medicine, Mayo Clinic; and
| | - Paul A Anderson
- 3Department of Orthopedics and Rehabilitative Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Benjamin D Elder
- 2Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,4Department of Neurologic Surgery, Mayo Clinic.,6Department of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
8
|
Martel DR, Lysy M, Laing AC. Predicting population level hip fracture risk: a novel hierarchical model incorporating probabilistic approaches and factor of risk principles. Comput Methods Biomech Biomed Engin 2020; 23:1201-1214. [PMID: 32687412 DOI: 10.1080/10255842.2020.1793331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fall-related hip fractures are a major public health issue. While individual-level risk assessment tools exist, population-level predictive models could catalyze innovation in large-scale interventions. This study presents a hierarchical probabilistic model that predicts population-level hip fracture risk based on Factor of Risk (FOR) principles. Model validation demonstrated that FOR output aligned with a published dataset categorized by sex and hip fracture status. The model predicted normalized FOR for 100000 individuals simulating the Canadian older-adult population. Predicted hip fracture risk was higher for females (by an average of 38%), and increased with age (by15% per decade). Potential applications are discussed.
Collapse
Affiliation(s)
- Daniel R Martel
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Martin Lysy
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Andrew C Laing
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|